1) Дать определение: число a больше числа b
a > b, ели a − b > 0
Число a больше числа b, если разность этих чисел положительна.
2) Сравнить:
а)
8/11 и 9/13
Вычтем из первого числа второе:
и 0
и 0
> 0
Значит,
б)
a²+16 и 8a
Вычтем из первого выражения второе:
a²−8a+16 и 0
(a−4)² и 0
по определению, вырежение в квадрате всегда дает число неотрицательное, то есть (a−4)²≥0
(a−4)² = 0, если a = 4
(a−4)² > 0, если a ≠ 4
Значит, a² + 16 > 8a, если a ≠ 4; и a²+16 = 8a, если a = 4.
3) Доказать неравенство:
(a−3)(a+11) < (a+3)(a+5)
a²+11a−3a−33 < a²+5a+3a+15
Вычтем из первого выражения второе:
a²+11a−3a−33−a²−5a−3a−15 и 0
−48 и 0
Значит, (a−3)(a+11) < (a+3)(a+5), что и требовалось доказать.
4) Сравнить числа а и b, если верно неравенство: 3a−3b ≥ 1
5) Оценить величину: 5а−2, если 1,1 < а ≤ 1,2
Умножим все части неравенства на 5:
5·1,1 < 5a ≤ 5·1,2
5,5 < 5а ≤ 6
Вычтем из всех частей неравенства 2:
5,5−2 < 5а−2 ≤ 6−2
Получаем:
3,5 < 5а−2 ≤ 4
Найдем наибольший общий делитель для кол-ва фруктов каждого вида.
92=2*2*23;
138=2*3*23;
230=2*5*23.
Пошаговое объяснение:НОК=2*23=46 - то есть максимально бабушка могла закрыть 46 банок, в каждой из которых лежали бы 2 груши, 3 яблока и 5 абрикосов
(возможны ситуации, в которых бабушка закрыла бы всего 2 банки, в каждой из которых оказались бы 46 груш, 69 яблок и 115 абрикосов, или всего 23 банки (в каждой из которых 4 яблока, 6 груш и 10 абрикосов, но первый вариант - с НОК - логичнее. Скорее всего, он и подразумевается)
Поделитесь своими знаниями, ответьте на вопрос:
Напишите как называется разряд в десятичной записи числа, который расположен: на третьем месте справа от запятой; на втором месте справа от запятой
2-е место справа от запятой - сотая