Svatela37
?>

Вбочке было 47 ведер воды. на поливку огорода израсходовали 29 ведер, потом долили 26 ведер воды. сколько ведер воды стало в бочке?

Математика

Ответы

sochi-expert
1) 50 + 16 = 66(вёдер) воды было бы в бочке, если ничего не поливать
2) 66 - 43 = 23(ведра) было израсходовано на полив
ответ: 23 ведра воды израсходовали на поливку огорода.
2-ой
1) 43 - 16 = 27 (вёдер) воды оставалось в бочке после полива
2) 50 - 27 = 23 (ведра ) воды было израсходовано
ответ: тот же.
3-тий
х (вёдер) воды израсходовано,
тогда 50 - х + 16 = 66 - х ( вёдер) воды должно быть в бочке
Уравнение:
66 - х = 43
х = 66 - 43
х = 23
Margarita
1) 47 - 29 = 18 (в.) - осталось после поливки огорода.
2) 18 + 26 = 44 (в.) - стало после доливки ведёр в бочку.
ответ: в бочке стало 44 ведра.
jenek-f

1. Числа с одинаковыми знаками складывают. Числа с разными знаками вычитают.

2. Чтобы сложить два отрицательных числа, надо поставить знак минус и сложить их модули.

Например, -7-10=-(7+10)=-17

-15+(-11)=-15-11=-(15+11)=-26

3. Если два числа имеют разные знаки, то ставят знак того слагаемого, модуль которого больше, и от большего по модулю числа вычитают меньшее.

Например, -7+9=9-7=2

5-12=-(12-5)=-7

-10+7=-(10-7)=-3+(-15)=20-15=5

17+(-27)=-(27-17)=-10

-5-(-9)=-5+9=-(9-5)=-4

-38-(-20)=-38+20=-(38-20)—18.

4. Сумма противоположных чисел равна нулю.

Например, -8+8=0

24+(-24)=0.

Алена-Петрова285
Во-первых, у уравнения есть очевидный корень x_1 = 4 , заявленный и в приведённом условии. Далее порассуждаем практически:

x=0) 2^0 4 \cdot 0 ;

x=1) 2^1 < 4 \cdot 1 ;

x=2) 2^2 < 4 \cdot 2 ;

x=3) 2^3 < 4 \cdot 3 ;

x=4) 2^4 = 4 \cdot 4 ;

x=5) 2^5 4 \cdot 5 ;

При x 4 , производная (2^x)'_x = 2^x \ln{2} 2^4 \ln{\sqrt{e}} = 8 больше производной (4x)'_x = 4, т.е. дальше левая часть уравнения, растёт быстрее, чем правая, а значит, других корней при x 4 быть не может.

При x < 0 , левая часть уравнения положительна, а правая отрицательна, так что других корней при x < 0 быть не может.

Однако, как видно из оценок (x=0) и (x=1) уравнение явно имеет решение на x \in (0,1), так как при сравнении двух непрерывных функций на этом интервале меняется знак.

Предположим, что второе решение рационально. Тогда слева мы будем иметь арифметический корень некоторой степени из двойки, возведённой в некоторую другую несократимую и меньшую степень, т.е. если x = \frac{p}{q} , где \{ p < q \} \in N , то: 2^x = 2^\frac{p}{q} = (\sqrt[q]2)^p < 2 . Это число, очевидно иррационально, что легко доказать от обратного методом Евклида. Однако справа должно быть рациональное число 4 \cdot \frac{p}{q} = \frac{4p}{q} , а значит, мы пришли к противоречию. Таким образом, второе решение иррационально.

Если, тем не менее, такой корень должен быть найден, то нам придётся привлечь некоторые не очень сложные знания из высшей математики, поскольку иначе данная задача не может быть решена.

В высшей математике используется множество дополнительных функций. Одна из них, функция Ламберта x = W(t) , по определению дающая решение, т.е. являющаяся обратной, к функции t = xe^x . Функция вводится аналогично, скажем, функции x = arctg(t) , являющейся решением уравнения t = tg{x} , но в отличие от арктангенса, функция Ламберта используется намного реже в прикладных задачах (в основном в задачах теплопроводности), и поэтому – менее широко известна. Функция вводится на расширенной комплексной плоскости, т.е. алгебраически, а не арифметически, а значит по определению, может быть многозначной, и является таковой при отрицательных значениях аргумента t , хотя нам достаточно будет знать лишь её действительные значения, которых при отрицательных аргументах всегда два. Вид действительных ветвей функции Ламберта представлен на приложенном изображении.

Преобразуем наше уравнение к функции Ламберта:

2^x = 4x ;

(\frac{1}{2})^x = \frac{1}{4} \cdot \frac{1}{x} ;

x \cdot e^{ x \ln{ \frac{1}{2} } } = \frac{1}{4} ;

- x \ln{2} \cdot e^{ - x \ln{2} } = - \frac{ \ln{2} }{4} ;

Обозначим: y = - x \ln{2} , тогда:

y e^y = t = - \frac{ \ln{2} }{4} , отсюда через функцию Ламберта:

y = W(t) = W( -\frac{ \ln{2} }{4} ) ,

x = - \frac{y}{ \ln{2} } = - \frac{ W( -\frac{ \ln{2} }{4} ) }{ \ln{2} } ;

Функция Ламберта при t = -\frac{ \ln{2} }{4} \approx -0.17328679513998633 \pm 10^{-17} равна:

W(t) \in \{ -0.21481111641565689 \pm 10^{-17} , -2.77258872223978124 \pm 10^{-17} \} ;

что можно вычислить, либо через таблицу значений функции Ламберта, либо методом последовательных приближающихся вычислений, что можно легко проделать методами элементарного программирования, просто на калькуляторе или в двух связанных ячейках Excel, что я и проделала, подставляя в качестве x искомое значение и вычисляя t = xe^x , добиваясь его равенства t = -\frac{ \ln{2} }{4} \approx -0.17328679513998633 \pm 10^{-17} .

Большее из двух частных значений функции Ламберта при делении его на - \ln{2} как раз и даст значение x_1 = 4 , что можно легко проверить подстановкой.

Меньшее значение даст второй корень исходного уравнения:

В аналитической форме: x_2 = - \frac{ \min{ W( -\frac{ \ln{2} }{4} ) } }{ \ln{2} } ;

В форме приближённого значения:

x_2 \approx 0.30990693238069054 \pm 10^{-17} ;

О т в е т :

x \in \{ - \frac{ W( -\frac{ \ln{2} }{4} ) }{ \ln{2} } \} ;

x \in \{ -\frac{ min{W( -\frac{ \ln{2} }{4} ) } }{ \ln{2} } , 4 \} ;

x \in \{ 0.30990693238069054 \pm 10^{-17} , 4 \} .

Когда-то давным давно мне задали уравнение: 2 в степени х=4х и сказали решишь поступишь в упи им. с.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вбочке было 47 ведер воды. на поливку огорода израсходовали 29 ведер, потом долили 26 ведер воды. сколько ведер воды стало в бочке?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

misterdre9991
Ионов202
mpityk
bondarenkoss
DVOct33
manager6
k-serga1
sergei-pletenev
bulin2001
misie1974
ValerevnaRustam1072
Corneewan
vbnm100584
kirieskamod262
d892644813661946