геннадиевна2001
?>

Представьте натуральное число: 1) 1 2) 10 3) 7 4) 25 в виде обыкновенной дроби со знаменателем: а) 10 б) 100 в) 1000

Математика

Ответы

sunrise
Если нужно - можно сократить дроби
Представьте натуральное число: 1) 1 2) 10 3) 7 4) 25 в виде обыкновенной дроби со знаменателем: а) 1
kapriz1999
Прикажем одному солдату выйти из строя! Тогда там останется некоторое количество, которое делится без остатка на 4, одновременно делится без остатка на 5 и одновременно делится без остатка на 6, а это означает, что оно должно делиться на наименьшее общее кратное HOK (4,5,6) = 60 ,

Значит искомое число солдат: N = 60 k + 1 , где k – некоторое целое число.

П е р в ы й . п у т ь . р е ш е н и я :

Пусть k = 0 , тогда N = 60 \cdot 0 + 1 = 1 , но 1 не делится на 7 , а значит не подходит.

Пусть k = 1 , тогда N = 60 \cdot 1 + 1 = 61 , но 61 не делится на 7 , а значит не подходит.

Пусть k = 2 , тогда N = 60 \cdot 2 + 1 = 121 , но 121 = ( 7 \cdot 17 + 2 ) не делится на 7 , а значит не подходит.

Пусть k = 3 , тогда N = 60 \cdot 3 + 1 = 181 , но 181 = ( 7 \cdot 25 + 6 ) не делится на 7 , а значит не подходит.

Пусть k = 4 , тогда N = 60 \cdot 4 + 1 = 241 , но 241 = ( 7 \cdot 34 + 3 ) не делится на 7 , а значит не подходит.

Пусть k = 5 , тогда N = 60 \cdot 5 + 1 = 301 , и 301 = ( 7 \cdot 43 ) – делится на 7 , а значит подходит !

И это минимальное число солдат: N = 301 .

В т о р о й . п у т ь . р е ш е н и я :

Как мы выяснили N = 60 k + 1 , где k – некоторое целое число.

Преобразуем N = 56k + 4k + 1 , где k – некоторое целое число.

И это число, с другой стороны кратно семи, т.е. N = 56k + 4k + 1 = 7m , где k и m – некоторые целые числа.

Итак: 56k + 4k + 1 = 7m ;

4k + 1 = 7m - 7 \cdot 8k ;

4k + 1 = 7 ( m - 8k ) – правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:

4k + 1 = 7 n , где k и n – некоторые целые числа.

\frac{ 4k + 1 }{7} = n , где k и n – некоторые целые числа.

что возможно при самом малом k = 5 , а значит:

N = 60 k + 1 , где k = 5 ;

N = 60 \cdot 5 + 1 = 301 ;

Т р е т и й . п у т ь . р е ш е н и я :

Как мы выяснили N = 60 k + 1 , где k – некоторое целое число.

Преобразуем N = 63k - 3k + 1 , где k – некоторое целое число.

И это число, с другой стороны кратно семи, т.е. N = 63k - 3k + 1 = 7m , где k и m – некоторые целые числа.

Итак: 63k - 3k + 1 = 7m ;

1 - 3k = 7m - 7 \cdot 9k ;

3k - 1 = 7 \cdot 9k - 7m ;

3k - 1 = 7 ( 9k - m ) – правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:

3k - 1 = 7 n , где k и n – некоторые целые числа.

\frac{ 3k - 1 }{7} = n , где k и n – некоторые целые числа.

что возможно при самом малом k = 5 , а значит:

N = 60 k + 1 , где k = 5 ;

N = 60 \cdot 5 + 1 = 301 ;

О т в е т : N = 301 .
sebastianpereira994
Прикажем одному солдату выйти из строя! Тогда там останется некоторое количество, которое делится без остатка на 4, одновременно делится без остатка на 5 и одновременно делится без остатка на 6, а это означает, что оно должно делиться на наименьшее общее кратное HOK (4,5,6) = 60 ,

Значит искомое число солдат: N = 60 k + 1 , где k – некоторое целое число.

П е р в ы й . п у т ь . р е ш е н и я :

Пусть k = 0 , тогда N = 60 \cdot 0 + 1 = 1 , но 1 не делится на 7 , а значит не подходит.

Пусть k = 1 , тогда N = 60 \cdot 1 + 1 = 61 , но 61 не делится на 7 , а значит не подходит.

Пусть k = 2 , тогда N = 60 \cdot 2 + 1 = 121 , но 121 = ( 7 \cdot 17 + 2 ) не делится на 7 , а значит не подходит.

Пусть k = 3 , тогда N = 60 \cdot 3 + 1 = 181 , но 181 = ( 7 \cdot 25 + 6 ) не делится на 7 , а значит не подходит.

Пусть k = 4 , тогда N = 60 \cdot 4 + 1 = 241 , но 241 = ( 7 \cdot 34 + 3 ) не делится на 7 , а значит не подходит.

Пусть k = 5 , тогда N = 60 \cdot 5 + 1 = 301 , и 301 = ( 7 \cdot 43 ) – делится на 7 , а значит подходит !

И это минимальное число солдат: N = 301 .

В т о р о й . п у т ь . р е ш е н и я :

Как мы выяснили N = 60 k + 1 , где k – некоторое целое число.

Преобразуем N = 56k + 4k + 1 , где k – некоторое целое число.

И это число, с другой стороны кратно семи, т.е. N = 56k + 4k + 1 = 7m , где k и m – некоторые целые числа.

Итак: 56k + 4k + 1 = 7m ;

4k + 1 = 7m - 7 \cdot 8k ;

4k + 1 = 7 ( m - 8k ) – правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:

4k + 1 = 7 n , где k и n – некоторые целые числа.

\frac{ 4k + 1 }{7} = n , где k и n – некоторые целые числа.

что возможно при самом малом k = 5 , а значит:

N = 60 k + 1 , где k = 5 ;

N = 60 \cdot 5 + 1 = 301 ;

Т р е т и й . п у т ь . р е ш е н и я :

Как мы выяснили N = 60 k + 1 , где k – некоторое целое число.

Преобразуем N = 63k - 3k + 1 , где k – некоторое целое число.

И это число, с другой стороны кратно семи, т.е. N = 63k - 3k + 1 = 7m , где k и m – некоторые целые числа.

Итак: 63k - 3k + 1 = 7m ;

1 - 3k = 7m - 7 \cdot 9k ;

3k - 1 = 7 \cdot 9k - 7m ;

3k - 1 = 7 ( 9k - m ) – правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:

3k - 1 = 7 n , где k и n – некоторые целые числа.

\frac{ 3k - 1 }{7} = n , где k и n – некоторые целые числа.

что возможно при самом малом k = 5 , а значит:

N = 60 k + 1 , где k = 5 ;

N = 60 \cdot 5 + 1 = 301 ;

О т в е т : N = 301 .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Представьте натуральное число: 1) 1 2) 10 3) 7 4) 25 в виде обыкновенной дроби со знаменателем: а) 10 б) 100 в) 1000
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nsn-2012
Larisa-Andrei
nikolavlad
Korneeva1856
Жукова_Петрович1281
anytkaakk
Качкова1820
kristinmk
Камочкин
sakalrip
zakupki
zhmulyov-denis8
Sergeevna-Makarov
efimov33
italiankarest