В данном случае , можно перебрать так как a>b>c>d и числа натуральные то максимальное возможное значение a=9, так как в случае a=10 два каких то числа будут равны , что не удовлетворяет условию задачи, минимальное возможно значение числа a=6 , так как если a<6 то одно из чисел b,c,d будет a<=b что так же не подходит Откуда возможны случаи 9+3+2+1=15 8+4+2+1=15 7+5+2+1=15 7+4+3+1=15 6+5+3+1=15 Проверяя каждое получаем что только в случае a=7, b=5, c=2, d=1 получаем 49-25+4-1=27
irschacha
19.10.2021
В разряде сотен цифра 9 встречается у чисел 900, 901, ..., 999. Всего таких чисел 100. В разряде десятков цифра 9 встречается у чисел 90, ..., 99, 190, 191, 199, ..., 990, 991, 999. То есть в каждой из 10 сотен существует 10 чисел, которые содержат 9 в разряде десятков. Всего таких чисел 10*10=100. В разряде единиц цифра 9 встречается у одного числа из десяти - у одного от 1 до 10, у одного от 11 до 20, и так далее, то есть, один раз на каждый десяток. Всего десятков 100 (в последний десяток - 991, 992 и так далее можно добавить число 1000, в нём нет цифры 9, поэтому результат не изменится), значит, чисел с девяткой в разряде единиц также будет 100.
Значит, всего в записи чисел от 1 до 999 содержится 100+100+100=300 девяток.