3) При возведении обеих частей уравнения в одинаковую четную степень не всегда получаются равносильные уравнения.
Пошаговое объяснение:
1) Утверждение не верно.
Иррациональными называются уравнения, в которых переменная содержится под знаком корня. Например:
Это уравнение имеет корень х = -5!
2) Утверждение не верно.
Например, если возвести в нулевой степень (0 принадлежит множеству действительных чисел) уравнение, имеющий только корень х=0:
то получим
1 ≡ 1, что означает, последнее верно для любого х∈R.
3) Утверждение верно.
Уравнения называются равносильными, если имеют одно и то же множество корней.
В самом деле, рассмотрим иррациональное уравнение, которое не имеет корней:
После возведения в квадрат получим:
x+5=25
А это уравнение имеет корень x=20!
4^n + 6n - 1 применим метод математической индукции
1. n=1 4+6-1=9 да
2. предположим, что верно для n=k
4^k + 6k - 1 верно
3. докажем для n=k+1
4^(k+1) + 6(k+1) - 1 = 4*4^k + 6k + 6 - 1 = (4^k + 6k - 1) + 3*(4^k+2)
первая скобка делится на 9 по 2. надо доказать что 4^k+2 делится на 3
Опять применим ММИ
1. k=1 4+2=6 делится на 3
2. предположим верно при k=m
4^m+2 делится на 3
3/ докажем k=m+1 4^(m+1)+2 = (4^m+2) + 3*4^m первая скобка на 3 делится по 2. второй член делится так как один из множителей кратен 3
Итак 3*(4^k+2) кратен 9 так как скобка кратна 3 и один из членов тоже кратен 3 итого 3*3 кратно 9
доказали
Поделитесь своими знаниями, ответьте на вопрос:
Если из наименьшего шестизначного числа вычесть наибольшее четырехзначное число, то получится? варианты ответов: 1) 91000, 2)90001, 3)10000, 4)9001
100000-9999
Будет 90001