Решения по железной дороге нужно 750 т зерна. сколько для этого потребуется вагонов , вмещающих каждый по 60 т зерна ? в скольких вагонах, вмещающих по 40 т , можно перевезти это же зерно ?
Найдем координаты точки D (медианы стороны ВС): Xd=(3+4)/2=3,5. Yd=(1-2)/2=-0,5. D(3,5;-0,5). Вектор AD{Xd-Xa;Yd-Ya} или AD{2,5;-3,5}. Модуль вектора |AD|=√(6,25+12,25)=√18,5. Уравнение прямой ВС: (X-Xb)/(Xc-Xb)=(Y-Yb)/(Yc-Yb) или (X-4)/(-1)=(Y-1)/(-3) - каноническое уравнение. Уравнение прямой ВС в общем виде Ax+By+C=0: 3х-y-11=0, где А=3, В=-1, С=-11. Вектор нормали прямой - это перпендикуляр к прямой. Координаты вектора нормали из уравнения прямой ВС: n={А;В}={3;-1}. Этот же вектор - направляющий вектор для прямой АЕ. Формула для уравнения прямой, проходящей через точку А(1;3) и имеющей направляющий вектор р{3;-1}, то есть уравнение прямой АЕ: (X-1)/3=(Y-3)/-1 - каноническое уравнение. х+3y-10=0 - общее уравнение прямой АЕ. Найдем точку пересечения прямых АЕ и ВС: Система двух уравнений: 3х-y-11=0 и х+3y-10=0. Решаем систему и имееи: Х=4,3 и Y=1,9/ То есть точка Е(4,3;1,9). Тогда вектор АЕ{3,3;-1,1}. Модуль вектора |AE|=√(10,89+1,21)=√12,1. Угол между векторами AD и ВЕ: Cosα=(Xad*Xae+Yad*Yae)/(√18,5*√12,1)≈ 12,1/14,96 ≈ 0,809. ответ: угол между векторами равен arccos(0,809. или α≈36°.
Рисунок, иллюстртрующий решение, дан в приложении.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решения по железной дороге нужно 750 т зерна. сколько для этого потребуется вагонов , вмещающих каждый по 60 т зерна ? в скольких вагонах, вмещающих по 40 т , можно перевезти это же зерно ?
Всего - 750 т
вместимость вагона - 60 т
вместимость вагона - 40 т
Кол-во вагонов - ?
Решение
а) 750:60=12,5≈13 (вагонов) вмещающих 60 т зерна.
б) 750:40=18,75≈19 (вагонов) вмещающих 40 т зерна.
ответ: для того чтобы перевезти 750 тонн зерна потребуется 13 вагонов, вмещающих каждый по 60 тонн зерна; 19 вагонов вмещающих по 40 тонн зерна.