f(x0+Δx)≈f(x0)+f′(x0)∗dx (1).
Находим приближенное значение arccos0.09
1. Выбираем значение x0 при котором arccos
можно найти, в данном случае удобно взять x0=0
2. Рассчитываем dx=Δx=0,09−0=0,09, т.к. x0+Δx=0,09=> Δx=0.09−x0=0,09−0
3. Находим f(x0)=π/2=1,570796.
4. Находим производную функции f′(x)=-1/√(1-х²)
5. Находим значение производной f′(x0). f′(0)=-1.
6. Подставляем в формулу (1) для расчета приближенного значения
arc cos0,09 ≈ 1.570796 -1*0.09 = 1.480796.
7. Проверяем решение на калькуляторе arc cos0,09 ≈
1.480674.Поделитесь своими знаниями, ответьте на вопрос:
60-5·5 49: 7+17 (68-36): 4+48 (42-28)·9-17 (52-48)·(35-28) (27+15): (13-16) .