1. (а + b)¹= а + b 2. (а + b)²= а²+ 2аb + b² 3. (а + b)³= а³ +3а²b + 3аb² + b³ Можно раскрыть скобки при вычислении (а +b) и т.д., умножая полученный.Содержание. 1) Понятие бинома Ньютона. 2) Свойства бинома и биномиальных коэффициентов. 3) Примеры решения задач по теме «Бином Ньютона». 4) Выход.Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §53. Формула бинома Ньютона.БИНОМ НЬЮТОНА. Определение. Двучлен вида a+b называют биномом.Автор : Ван – Хо – Син Виктория Петровна, 7А класс. МОУ СОШ7 г.Амурска. Бином Ньютона.11 класс МКОУ «Усть-Мосихинская СОШ» Новосёлова Е.А.N!n! Волошина Н.Н., Произведение биномов, отличающихся только вторыми членами. Выражение х + а, как и вообще всякий двучлен, называется.Бином Ньютона Бином bis дважды nomen часть Натуральную степень двучлена умели представлять в виде суммы степеней его слагаемых еще в 10 веке индийцы.Бином Ньютона Бином bis дважды nomen часть Натуральную степень двучлена умели представлять в виде суммы степеней его слагаемых еще в 10 веке индийцы.
Cos²x\2- sin²x\2=sin(π\2-2x) cos²x\2=(1+cosx)\2 sin²x\2=(1-cos)\2 sin(π\2-2x)=cos2x
(1+cosx)\2-(1-cosx)\2=cos2x cos2x=2cos²x-1
1+cosx-1+cosx=2(2cos²x-1)
4cos²x-2cosx-2=0
2cos²x-cosx-1=0 введём замену переменной . Пусть cosx=y
2у²-у-1=0
D=1-4·2·(-1)=9 √D=3
y1=(1+3)\4=1
y2=(1-3)\4=-1\2
Вернёмся к замене : cosx=y1
cosx=1
x=+- arccos1+2πn n∈Z
x=2πn n∈Z
cosx=y2
cosx=-1\2
x=+- arccos(-1\2)+2πm m∈Z
так как значение арккосинуса отрицательное , то arccos(-1\2)=π-π\3=2π\3
x=+-2π\3+2πm m∈Z
Поделитесь своими знаниями, ответьте на вопрос:
Разгадайте шарады. три буквы-термин при игре. другие три-победный крик..