Вероятность получения брака при производстве продукции в 100 кг. массы составляет 10% с вероятностью 0.8 и 5% с вероятностью 0.2. составить алгоритм определения средней массы брака.
Всего брака - И первого (умножаем) ИЛИ (сумма) И второго (умножаем по формуле Р= 0,8*10% + 0,2*5% = 0,08 + 0,01 = 0,09 = 9%
shpakohat
15.04.2023
V(куба)= a³, где a - ребро куба.
Предположим, что ребро куба было 2 см. Тогда его объём был 8 см³. Увеличиваем в 2 раза длину ребра, то есть оно будет 4 см. А объём при этом станет 64 см³. Он увеличился у 8 раз, потому что 64/8= 8. Аналогично будет при любых значениях длины ребра.
Теперь увеличим длину ребра в 3 раза. Предположим ребро 3 см. Тогда объём такого куба 27 см³. После увеличения ребро станет 9 см, а объём - 729 см³; То есть объём увеличился у 27 раз.
Так же само уменьшаеться, в те же разы.
Теперь к задаче Переведём всё в дм: 1 м= 10 дм; 70 см = 7 дм; 50 см= 5 дм; Тогда объём этого бака 10* 5* 7= 350 дм³; Маса всей воды в этом баке: 350* 1= 350 (кг).
kotsur
15.04.2023
Среди чисел А и А+13 только одно трёхзначное. Тогда возможно, что число А двузначное, А+13 трёхзначное. Или может быть, что число А трёхзначное, А+13 четырёхзначное. Рассмотрим эти два случая. Пусть А двузначное, А+13 - трёхзначное. Тогда А от 87 до 99. Соответственно получится А+13 от 100 до 112. Это 13 вариантов: 87; 87+13=100 88; 88+13=101 89; 89+13=102 ... 99; 99+13=112
Пусть А трёхзначное число, А+13 - четырёхзначное. Тогда А от 987 до 999. Соответственно А+13 от 1000 до 1012. Это ещё 13 вариантов: 987; 987+13=1000 988; 988+13=1001 989; 989+13=1002 ... 999; 999+13=1012
Р= 0,8*10% + 0,2*5% = 0,08 + 0,01 = 0,09 = 9%