Положение центра вписанной окружности определим, узнав высоту трапеции. Тогда r = 4/2 = 2. Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание. Диагональ равна: Радиус описанной окружности равен: Площадь треугольника равна: S = (1/2)*8*4 = 16 кв.ед. Тогда Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение: H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875. Отсюда Δ = 3.875 - 4 = -0,125. Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания. ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
vadimpopov88
21.05.2023
Дано: v(собств.)=18 км/ч v(теч. реки)=2 км/ч t(по теч.)=1,5 часа t(по озеру)=45 минут = часов = ч (1 час = 60 минут) Найти: S=S(по теч.)+ S (по озеру) км Решение S(расстояние)=v(скорость)*t(время) 1) v(по теч.) = v(собств.) + v(теч. реки) = 18+2=20 (км/ч) - скорость катера по течению реки. 2) S (по теч.) =v(по теч.)*t(по теч.)=20*1,5=30 (км) - проплыл катер по течению реки. 3) S(по озеру) = v(собств.)*t(по озеру) = 18* = = 13,5 (км) - проплыл катер по озеру (стоячая вода, поэтому берется только собственная скорость катера). 4) 30+13,5=43,5 (км) - проплыл катер всего. ответ: 43,5 км