Kalashnikova
?>

Как найти ширину если длинна известна. а-35м в-? на15м кароче это 4 класс

Математика

Ответы

петрАфанасьев
35-15=20см ширина
Вес просто))
arturcristian

x^{2} + (a - 2)^{2} = |x + a - 2| + |x - a + 2|

Рассмотрим правую часть уравнения.

Найдем нули модулей:

1) \ x_{01} + a - 2 = 0; \ x_{01} = 2 - a

2) \ x_{02} - a + 2 = 0; \ x_{02} = a - 2

Тогда x_{01} x_{02} при a < 2 и x_{01} < x_{02} при a 2.

➠ Если x_{01} = x_{02}, то есть если a = 2, то имеем:

x^{2} + (2 - 2)^{2} = |x + 2 - 2| + |x - 2 + 2|

x^{2} = |x| + |x|

|x|^{2} - 2|x| = 0

|x|(|x| - 2) = 0

\displaystyle \left [ {{|x| = 0, \ \ \ \ } \atop {|x| - 2 = 0}} \right.\ \ \ \ \ \ \ \ \ \left [ {{x = 0 \ \ } \atop {x = \pm 2}} \right.

Имеем три корня. Таким образом, вариант a = 2 не подходит.

➠ Если a < 2, то:

\text{I}) \ x \in (-\infty; \ a - 2):

x^{2} + (a - 2)^{2} = -(x + a - 2) - (x - a + 2)

x^{2} + (a - 2)^{2} = -x - a + 2 - x + a - 2

x^{2} + 2x + (a - 2)^{2} = 0

Имеем квадратное уравнение. Для того чтобы это уравнение имело один корень, нужно чтобы дискриминант данного уравнения был равен нулю:

D = 2^{2} - 4 \cdot 1 \cdot (a - 2)^{2} = 4 - 4a^{2} + 16a - 16 = -4a^{2} + 16a - 12

D = 0 при a = 1 < 2 и a = 3 2

Таким образом, при a = 1 имеем решение.

\text{II}) \ x \in [a - 2; \ 2 - a]:

x^{2} + (a - 2)^{2} = -(x + a - 2) + (x - a + 2)

x^{2} + (a - 2)^{2} = -x - a + 2 + x - a + 2

x^{2} + (a - 2)^{2} = 4 - 2a

x^{2} = 4 - 2a - (a - 2)^{2}

Данное квадратное уравнение будет иметь один корень, если его правая часть будет равна нулю:

4 - 2a - (a - 2)^{2} = 0

4 - 2a - (a^{2} - 4a + 4) = 0

a^{2} - 4a + 4 - 4 + 2a = 0

a^{2} - 2a = 0

a(a - 2) = 0

\displaystyle \left [ {{a = 0 \ \ \ \ \ } \atop {a - 2 = 0}} \right. \ \ \ \ \ \ \ \ \left [ {{a = 0} \atop {a = 2}} \right.

Таким образом, при a = 0 имеем единственное решение.

\text{III}) \ x \in (2 - a; \ +\infty):

x^{2} + (a - 2)^{2} = (x + a - 2) + (x - a + 2)

x^{2} + (a - 2)^{2} = 2x

x^{2} - 2x + (a - 2)^{2} = 0

D =(-2)^{2} - 4 \cdot 1 \cdot (a-2)^{2} = 4 - 4a^{2} + 16a - 16 = -4a^{2} + 16a - 12

D = 0 при a = 1 < 2 и a = 3 2

Таким образом, при a = 1 имеем решение.

Следовательно, при a = 1 имеем два решения.

➠ Если a 2, то:

\text{I}) \ x \in (-\infty; \ 2 - a):

x^{2} + (a - 2)^{2} = -(x + a - 2) - (x - a + 2)

x^{2} + 2x + (a - 2)^{2} = 0

D = -4a^{2} + 16a - 12

D = 0 при a = 1 < 2 и a = 3 2

Таким образом, при a = 3 имеем решение.

\text{II}) \ x \in [2 - a; \ a - 2]:

x^{2} + (a - 2)^{2} = (x + a - 2) - (x - a + 2)

x^{2} + (a - 2)^{2} = x + a - 2 - x + a - 2

x^{2} + (a - 2)^{2} = 2a - 4

x^{2} = 2a - 4 - (a - 2)^{2}

2a - 4 - (a - 2)^{2} = 0

\displaystyle \left [ {{a = 2} \atop {a = 4}} \right.

Таким образом, при a = 4 имеем единственное решение.

\text{III}) \ x \in (2 - a; \ +\infty):

x^{2} + (a - 2)^{2} = (x + a - 2) + (x - a + 2)

x^{2} - 2x + (a - 2)^{2} = 0

D = -4a^{2} + 16a - 12

D = 0 при a = 1 < 2 и a = 3 2

Таким образом, при a = 3 имеем решение.

Следовательно, при a = 3 имеем два решения.

ответ: a = \{0; \ 4 \}


Здравствуйте, а можете с заданием Найдите все значения параметра а, при каждом из которых уравнение
Artyukhin545

Пошаговое объяснение:

пусть Иван выполняет работу за х1 дней, тогда за день 1/х1 часть работы

Петр - за х2 дней, за день 1/х2 часть

Андрей за х3 дней, за день 1/х3 часть

вот имеем систему трех уравнений

х2 + х3 = 1/20

х1 + х3 = 1/15

х1 + х2 = 1/12

проще всего ее решать методом Крамера

\left[\begin{array}{ccc}0*x1+x2+x3\\x1+0*x2+x3\\x1+x2+0*x3\end{array}\right] \left[\begin{array}{ccc}\frac{1}{20} \\\frac{1}{2} \\\frac{1}{12} \end{array}\right]

A = {det\left[\begin{array}{ccc}0&1&1\\1&0&1\\1&1&0\end{array}\right] } = 2

дальше напишу решение для х1, остальные считаются по аналогии, для них запишу только ответы

x1 = \frac{det\left[\begin{array}{ccc}1/20&1&1\\1/15&0&1\\1/12&1&0\end{array}\right] }{2} = \frac{1}{20}

для х2 и х3 значение 1/20; 1/15 и 1/12 подставляем во второй (для х2) а потом в третий (для х3) столбца и делаем расчет. в результате будет

x2 = \frac{1}{30}\\\\x3 = \frac{1}{60}

ответ Андрей в одиночку выроет яму за 60 дней

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Как найти ширину если длинна известна. а-35м в-? на15м кароче это 4 класс
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Khlustikova_Borisovna
snopovajulia
Svetlana395
d2002
podenkovaev314
info32
Yuliya mikhail
SVETLANAluiza1534
Сергеевич1907
Vladimirovna Dmitrieva
kbndbyb6
Columbia777
sergeevna
Shumnova42
kmb1960679