Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ; В следующих двух слагаемых вынесем общий множитель "40":
; В итоге получим следующее уравнение:
. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо
будет стоять
; Это приведет к тому, что придется убавить
; В итоге:
; Слева стоит квадрат суммы. Уравнение примет вид:
; Сворачивая еще раз:
; Получаем серию прямых:
; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом ; Рассмотрим прямую
; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников.
; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты
; Ну а все решения:
Задуманное двузначное число на 73 больше произведения своих чисел. Какое это число?
ответ: 81
Пошаговое объяснение:
Двузначные числа, большие чем 73, - это числа от 74 до 99. Значит, разность между 73 и возможными вариантами (то есть числами от 74 до 99) находится в интервале 1 до 26. Разность эта и есть произведение двух цифр в нашем числе.
Итак, произведение этих двух цифр есть число, не большее 26. По таблице умножения (в сегменте от 7х4 до 9х9) легко определить , что нужный нам результат (не более 26) приносят произведения 8х1, 8х2, 8х3, 9х1 и 9х2. Простым вычислением находим, что нужное нам число - 81.
8х1=8
81-(8х1)=73
Поделитесь своими знаниями, ответьте на вопрос:
Найдите уравнение с наименьшим корнем. в) x*4=570-90
Х4=570-90
Х4=480
480 делим на 4 и ответ.
Х=120