y = x³ - 3x² - 9x + 2
производная
y' = 3x² - 6x - 9
приравняем y' нулю и найдём экстремальные точки
3x² - 6x - 9 = 0
или
x² - x - 3 = 0
D = 1 + 12 = 13
√D = √13
x₁ = 0,5(1 - √13) ≈ -1,3
x₂ = 0,5(1 + √13) ≈ 2,3
Поскольку графиком производной y' = 3x² - 6x - 9 является парабола веточками вверх, то отрицательные значения производной будут находиться между корнями х₁ и х₂.
Поэтому в точке х₁ производная меняет знак с + на -. И это точка максимума.
В точке х₂ производная меняет знак с - на +, значит, это точка минимума.
ответ: в точке x₁ = 0,5(1 - √13) имеет место локальный максимум,
в точке x₂ = 0,5(1 + √13) имеет место локальный минимум
1. Нули функции : y=x^2-4x-32 = 0.
Д = 16 + 4*32 = 144. х1 = (4 + 12)/2 = 8, х2 = (4 - 12)/2 = -4.
2. Точки пересечения графиков функций: y=(5x-6)^2 и y=(5x-7)^2 .
Раскроем скобки и приравняем функции:
25х² - 60х + 36 = 25х² - 70х + 49.
10х = 13,
х = 13/10, у = 1/4. Одна точка пересечения ((13/10); (1/4)).
3. Координаты точек пересечения параболы : y=x^2-7 и прямой y-x=5.
Приравняем: x^2-7 = x+5, x^2-x-12 = 0, Д = 1 + 4*12 = 49.
х1 = (1 + 7)/2 = 4, х2 = (1 - 7)/2 = -3.
Две точки пересечения: (4; 9) и ((-3; 2).
Поделитесь своими знаниями, ответьте на вопрос:
2)5•6=30(м)-всго в больших гнездах
3)30+32=62(м)-было у диких бук
ответ:62 малыша