klimenokvapeshop1408
?>

На двух блюдах лежит по семь яблок, а в пяти тарелках по четыре яблока. сколько всего яблок?

Математика

Ответы

MDubovikov73
1) 7*2=14(яблок) - на двух блюдах.
2) 4*5=20(яблок)- на пяти тарелках
3) 20+14=34(яблока)
ответ:34 яблока всего.
Филипп1054
Одним из свойств простых чисел является утверждение, что множество простых чисел бесконечно (т. е. среди простых чисел нет наибольшего).Доказал это свойство простых чисел еще Евклид, используя метод от противного. Доказательство выглядит примерно так. Предположим, что множество простых чисел конечно, остальные числа являются составными. Найдем произведение всех существующих простых чисел и к этому результату добавим единицу. Понятно, что получившееся число больше любого из простых. Из предположения, что множество простых чисел конечно, следует, что получившееся число составное. Но если оно составное, то должно при разложении на множители содержать простые множители. Однако это не могут быть множители, которые использовались при образовании этого числа, т. к. к результату была добавлена 1, и, следовательно, произведение уже не делится нацело ни на одно из них (будет получаться остаток 1). Таким образом, приходим к выводу, что существуют иные простые числа, помимо использованных. Например, 2 * 3 * 5 * 7 + 1 = 211. Число 211 само является простым.
2 * 3 * 5 * 7 * 11 + 1= 2311. Число 2311 также простое. [ Т. е. произведение всех подряд идущих простых чисел от первого и до определенного и плюс 1 всегда будет давать простое число? Проверяем:
2 * 3 + 1 = 7,
2 * 3 * 5 + 1 = 31.
Но если числа идут не от первого простого и не подряд, то в результате простое число не всегда получается:
3 * 5 * 7 + 1 = 106 (составное)
2 * 5 * 7 + 1 = 71 (простое)
2 * 3 * 7 + 1 = 43 (простое)
3 * 5 * 7 * 11 + 1 = 1156 (составное)
3 * 11 * 13 + 1 = 430 (составное)
2 * 3 * 11 * 13 + 1 = 859 (простое)
Получается, что число 2 в этой формуле (n = p1 * p2 * … + 1) всегда приводит к простому числу в результате, независимо от того, какие взяты остальные простые числа. Без него всегда получается составное, также независимо от того, как и каком количестве взяты простые.]
Nikolaevna1623

Пусть лягушонок стартует в точке x_{0}. Тогда, если какие-то две точки повторились, то лягушонок побывал также в точке x_{0} дважды, т.е. мы попали в цикл. Если мы покажем, что уравнение 100l+99k=2020m+r,\; 0\leq r\leq 2019 имеет решение при любом r, то цикл будет состоять из всех точек, и лягушонок побывает во всех точках по одному разу, а затем вернется в точку x_{0};

Докажем для начала, что если существует решение для остатков i,j, то существует решение для остатка i+j. Это вполне очевидно: просто сложим два уравнения для остатков i,j. Теперь, в частности, если существует решение для j=1, то существует решение для всех остатков. То есть нам надо решить диофантово уравнение 100x+99y-2020z=1; Для этого сразу положим z=1; Пусть y=21;

Тогда из числа 99\times 20=1980 нам нужно получить число 2021; Но мы умеем прибавлять единицу: 1=100-99. То есть 99\times 20 +(100-99)+...+(100-99)=100\times41+99\times (-21)-2020=1; Иными словами, получили решение x=41,\;y=-21,\;z=1, но нам нужно решение в натуральных числах. Не вопрос: добавим к y 2020, а к z добавим 99. Получим решение: x=41,\; y=1999,\; z=100.

Итак, план действий следующий.

Пусть мы находимся в точке x_{0}. Прыгаем 41 раз на 100 и 1999 раз на 99. Теперь мы в точке x_{0}+1. Таким образом, мы посетим все точки.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На двух блюдах лежит по семь яблок, а в пяти тарелках по четыре яблока. сколько всего яблок?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

galustyanvitaly4842
Pashinov
Karmelita1978
Avolohova
Adabir20156806
apro3444595
pronikov90
olga-bardeeva
Винников724
sahar81305
Zhanibekrva Kandaurova
morozova4956
Шиловский126
Александрович
Ter-Pogosov_Vasilevna