Людмила
?>

Бригада бурильщиков за 9 месяцев пробурила 6453 м скважин при годовом плане 5420 м. на сколько метров бригада перевыполнила план года, если будет до конца года работать с той же производительностью?

Математика

Ответы

Vrpeshka
6453:9=717 м в месяц
717*12=8604 м пробурит за год
8604-5420=3184 м
ответ: на 3184 м перевыполнила план
mail5
6453 / 9 x 12 - 5420 =3184
yugraspets

Натуральные числа — это целые положительные числа. Здесь только 18.

Целые числа — это натуральные числа, ноль, а также числа, противоположные натуральным. Целые числа: 18, 0. 10

Рациональные числа — числа, которые могут быть представлены дробью, у которой числитель — целое число, а знаменатель — натуральное.  Периодические дроби рациональны. Рациональные числа: -73, 18, -1.176176, 0, 4.1, 11+5/7, 9/7, 3.14, 5.02002.

Иррациональные числа — это действительные числа, не являющиеся рациональными: 3+π, π/9, -sqrt(97).

Olga-Borisovna

10.5. Свойства производных, связанные с арифметическими действиями над функциями

Теорема 3. Если функции y1 = f1(x) и y2 = f2(x) заданы в окрестности точки x0 принадлежит R, а в самой точке x0 имеют конечные производные, то функции lamda1 f1(x) +lamda2 f2(x), lamda1 принадлежит R, lamda1 принадлежит R, f1(x)f2(x), а в случае f2(x0)не равно0 и функции f1(x)/f2(x) также имеют в точке x0 конечные производные; при этом имеют место формулы

(lamda1 y1 +lamda2 y2)' = lamda1 y'1 +lamda2 y'2, (10.21)

(y1y2)' = y'1y2 + y1y'2, (10.22)

(10.23)

(в формулах (10.21)-(10.23) значения всех функций взяты при x = x0).

Прежде всего заметим, что в силу условий теоремы в точке x0 существуют конечные пределы

(дельтаy1/дельтаx) = y'1, (дельтаy2/дельтаx) = y'2.

Докажем теперь последовательно формулы (10.21)-(10.23).

1) Пусть y = lamda1 y1 +lamda2 y2; тогда

дельта y = (lamda1( y1 + дельтаy1) + lamda2( y2 + дельтаy2)) - (lamda1y1 + lamda2y2) = lamda1дельтаy1 + lamda2дельтаy2

и, следовательно,

дельтаy1/дельтаx = lamda1дельтаy1/дельтаx + lamda2дельтаy2/дельтаx.

Перейдя здесь к пределу при дельтаx0, получим формулу (10.21).

2) Пусть y2 = y1y2; тогда

дельта y = ( y1 + дельтаy1)( y2 + дельтаy2)) - y1y2 = y2y1 + y2дельтаy1 + y1дельтаy2 + дельтаy1дельтаy2,

откуда

дельтаy1/дельтаx = y2дельтаy1/дельтаx + y1дельтаy2/дельтаx. (10.24)

Заметив, что в силу непрерывности функции f2 в точке x0 выполняется условие дельтаy2 = 0, и, перейдя в равенстве (10.24) к пределу при дельтаx0, получим формулу (10.22).

3. Пусть f2(x0)не равно0, и y = y1/y2; тогда

следовательно,

Перейдя здесь к пределу при дельтаx0, получим формулу (10.23). начало

Отметим, что из формулы (10.21) при y2 = 0 (так же, как и из формулы (10.22), когда функция y2 равна постоянной, а поэтому y'2 = 0) следует, что постоянную можно выносить из-под знака дифференцирования, т. е.

(lamday)' = lamday', lamda принадлежит R.

Пример. Вычислим производную функции tg x. Применяя формулу (10.23), получим

Итак,

(tg x)' = 1/cos2x.

Аналогично вычисляется

(ctg x)' = -1/sin2x.

Замечание. Поскольку dx = y'dx, то, умножая формулы (10.21)-(10.23) на dx, получим

d(lamda1 y1 +lamda2 y2) = lamda1dy1 +lamda2 dy',

d(y1y2) = y2dy1 + y1dy2,

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Бригада бурильщиков за 9 месяцев пробурила 6453 м скважин при годовом плане 5420 м. на сколько метров бригада перевыполнила план года, если будет до конца года работать с той же производительностью?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Kochereva-Sergei
igorSvetlana547
mantseva
Verakravez8790
Вадим
sergeevich
iracaenko153
leeka152522
sashakrotova943
sjmurko
Yarovitsin
NIKOLAEVNA
av52nazarov
nelli-bi6
opscosmiclatte7868