18 см
Пошаговое объяснение:
1) Если через две названные точки, являющиеся серединами диагоналей трапеции, провести линию, пересекающую боковые стороны трапеции, то получим 2 треугольника, каждый из которых опирается на сторону 8 см, и в каждом из которых продолжение линии за стороной, являющейся диагональю трапеции, является средней линий, т.к. проведенная линия параллельна основания трапеции.
2) Средняя линия равна 1/2 той стороны, которой она параллельна.
Значит, средняя линия каждого из треугольников равна:
8 : 2 = 4 см.
3) Теперь можно рассчитать среднюю линию трапеции.
Она состоит из 3-х отрезков:
4 см (средняя линия первого треугольника) + 5 см (расстояние между точками, являющими серединами диагоналей трапеции) + 4 см (средняя линия второго треугольника) = 13 см
3) Средняя линия трапеции равна полусумме её оснований. Составим уравнение и решим его:
(8+х) / 2 = 13, где х - второе основание, которое нам надо найти.
8+х = 26,
х = 18 см
ответ: 18 см.
Поделитесь своими знаниями, ответьте на вопрос:
Решить уравнение: 2(x+3)-12=-26 . 7 класс!
2x=-26+12-6
2x=-32+12
2x=-20
x=-10