1. Дать определение первой медицинской и определить ситуации, в которых она оказывается.2. Общий порядок действий оказывающего первую медицинскую определение неотложной ситуации и необходимости оказания первой медицинской принятие решения об оказании первой медицинской помощи;• вызов неотложной медицинской оказание пострадавшему первой медицинской до прибытия бригады «скорой Обсудить ситуации, при которых необходимо вызывать «скорую пострадавший находится в бессознательном состоянии;• у пострадавшего затрудненное дыхание или дыхание отсутствует;• у пострадавшего непрекращающиеся боли в груди или ощущение давления в груди;• у пострадавшего сильное кровотечение;• у пострадавшего сильные боли в животе;• у пострадавшего отравление и другие неотложные состояния.В заключение урока необходимо подчеркнуть, что основной целью в оказании первой медицинской является помощь человеку, получившему травму или страдающему от внезапного приступа заболевания, до момента прибытия квалифицированной медицинской такой, как бригада «скорой Подробнее - на -
Объяснение:
Главная проблема использования одноключевых (симметричных) криптосистем заключается в распределении ключей. Для того, чтобы был возможен обмен информацией между двумя сторонами, ключ должен быть сгенерирован одной из них, а затем в конфиденциальном порядке передан другой. Особую остроту данная проблема приобрела в наши дни, когда криптография стала общедоступной, вследствие чего количество пользователей больших криптосистем может исчисляться сотнями и тысячами.
Начало асимметричным шифрам было положено в работе «Новые направления в современной криптографии» Уитфилда Диффи и Мартина Хеллмана, опубликованной в 1976 году. Находясь под влиянием работы Ральфа Меркле (Ralph Merkle) о рас открытого ключа, они предложили метод получения секретных ключей для симметричного шифрования, используя открытый канал. В 2002 году Хеллман предложил называть данный алгоритм «Диффи - Хеллмана - Меркле», признавая вклад Меркле в изобретение криптографии с открытым ключом.
Хотя работа Диффи-Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают алгоритм RSA (названный по имени авторов - Рон Ривест (Ronald Linn Rivest), Ади Шамир (Adi Shamir) и Леонард Адлеман (Leonard Adleman) из Массачусетского Технологического Института (MIT)).
Справедливости ради следует отметить, что в декабре 1997 года была обнародована информация, согласно которой британский математик Клиффорд Кокс (Clifford Cocks), работавший в центре правительственной связи (GCHQ) Великобритании, описал систему, аналогичную RSA, в 1973 году, а несколькими месяцами позже в 1974 году Малькольм Вильямсон изобрел математический алгоритм, аналогичный алгоритму Диффи – Хеллмана - Меркле.
Суть шифрования с открытым ключом заключается в том, что для шифрования данных используется один ключ, а для расшифрования другой (поэтому такие системы часто называют асимметричными).
Основная предпосылка, которая привела к появлению шифрования с открытым ключом, заключалось в том, что отправитель сообщения (тот, кто зашифровывает сообщение), не обязательно должен быть его расшифровывать. Т.е. даже имея исходное сообщение, ключ, с которого оно шифровалось, и зная алгоритм шифрования, он не может расшифровать закрытое сообщение без знания ключа расшифрования.
Первый ключ, которым шифруется исходное сообщение, называется открытым и может быть опубликован для использования всеми пользователями системы. Расшифрование с этого ключа невозможно. Второй ключ, с которого дешифруется сообщение, называется секретным (закрытым) и должен быть известен только законному получателю закрытого сообщения.
Алгоритмы шифрования с открытым ключом используют так называемые необратимые или односторонние функции. Эти функции обладают следующим свойством: при заданном значении аргумента х относительно вычислить значение функции (x), однако, если известно значение функции y = f(x), то нет пути для вычисления значения аргумента x. Например, функция SIN. Зная x, легко найти значение SIN(x) (например, x = , тогда SIN() = 0). Однако, если SIN(x) = 0, однозначно определить х нельзя, т.к. в этом случае х может быть любым числом, определяемым по формуле i * , где i – целое число.
Однако не всякая необратимая функция годится для использования в реальных криптосистемах. В их числе и функция SIN. Следует также отметить, что в самом определении необратимости функции присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства за обозримый интервал времени.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Решить иксы 1) (3-2x)+(4-3x)+(5-5x)=12 2) 3y-(y-19)=2y 3) 3y+(y-2)=2(2y-1)
-2х-3х-5х=12-3-4-5;
-10х=0;
х=0;
ответ:0.
2)3у-(у-19)=2у;
3у-у+19=2у:
2у-2у=19;
0у=19;
ответ: нет корней.
3)3у+(у-2)=2(2у-1);
3у+у-2=4у-2;
4у-4у=-2+2;
0у=0
ответ: любое число