likakedo4ka439
?>

Стрелок стреляет по мишени 300 раз вероятность попадания в мишень при каждом выстреле равна 2/3 . оценить вероятность того что стрелок попадёт в мишень от 185до 215 раз

Математика

Ответы

avguchenkov
Для решения данной задачи, мы можем использовать биномиальное распределение вероятности, так как мы имеем последовательность независимых испытаний с двумя возможными исходами: попадание в мишень (с вероятностью 2/3) и промах (с вероятностью 1/3).

Для начала, давайте определим основные понятия и формулы, которые мы будем использовать для решения задачи.

n - количество испытаний (в данном случае 300)
k - количество успехов (попаданий в мишень)
p - вероятность успеха в каждом испытании (2/3)
q - вероятность промаха в каждом испытании (1/3)

Формула для нахождения вероятности k успехов из n испытаний следующая:

P(k) = C(n, k) * p^k * q^(n-k),

где C(n, k) - количество комбинаций из n элементов, в которых k элементов являются успехами. Формула для вычисления C(n, k) выглядит следующим образом:

C(n, k) = n! / (k! * (n-k)!)

Теперь, давайте приступим к решению.

Для начала, нам нужно определить количество комбинаций C(n, k). Для этого мы воспользуемся формулой:

C(300, k) = 300! / (k! * (300-k)!)

Таким образом, чтобы оценить вероятность того, что стрелок попадет в мишень от 185 до 215 раз, нам нужно вычислить вероятности для каждого значения k от 185 до 215 и сложить их.

Вот пошаговое решение:
1. Вычислим количество комбинаций для каждого значения k от 185 до 215, используя формулу C(300, k).
2. Для каждого значения k, вычислим вероятность P(k) с помощью формулы P(k) = C(300, k) * (2/3)^k * (1/3)^(300-k).
3. Сложим все вероятности P(k) от 185 до 215, чтобы получить искомую вероятность.

Давайте продемонстрируем это на примере:

для k = 185:
C(300, 185) = 300! / (185! * (300-185)!)
P(185) = C(300, 185) * (2/3)^185 * (1/3)^(300-185)

повторим эти шаги для каждого значения k от 185 до 215 и сложим полученные вероятности:

P = P(185) + P(186) + P(187) + ... + P(215)

Таким образом, мы сможем оценить вероятность того, что стрелок попадет в мишень от 185 до 215 раз.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стрелок стреляет по мишени 300 раз вероятность попадания в мишень при каждом выстреле равна 2/3 . оценить вероятность того что стрелок попадёт в мишень от 185до 215 раз
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Lerkinm
cosmetic89
Novikova Aleksandrovna
МуратМарина1140
(-2 5/9+1 20/21): 1 8/49-1 7/9: (-6)=
testovich1012
aureole6452
Komarovsergeysk
Paikina Natalya30
qwqwweqw3
nasrelza1012
fashbymsk
ольга1801
смирнов1127
mirsanm26249
Dampil