ответ:
функция y=cosx является чётной. поэтому её график симметричен относительно оси oy .
для построения графика на отрезке −π≤x≤π достаточно построить его для 0≤x≤π , а затем симметрично отразить его относительно оси oy .
найдём несколько точек, принадлежащих графику на этом отрезке 0≤x≤π : cos0=1; cosπ6=3√2; cosπ4=2√2; cosπ3=12; cosπ2=0; cosπ=−1 .
итак, график функции y=cosx построен на всей числовой прямой.
пошаговое объяснение:
1. область определения — множество r всех действительных чисел.
2. множество значений — отрезок [−1; 1] .
3. функция y=cosx периодическая с периодом 2π .
4. функция y=cosx — чётная.
5. функция y=cosx принимает:
- значение, равное 0 , при x=π2+πn,n∈z;
- наибольшее значение, равное 1 , при x=2πn,n∈z ;
- наименьшее значение, равное −1 , при x=π+2πn,n∈z ;
- положительные значения на интервале (−π2; π2) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈z ;
- отрицательные значения на интервале (π2; 3π2) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈z .
6. функция y=cosx :
- возрастает на отрезке [π; 2π] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈z ;
- убывает на отрезке [0; π] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈z .
Поделитесь своими знаниями, ответьте на вопрос:
Проектор полностью освещает экран а высотой 50 см, расположенный на расстоянии 20 см от проектора. на каком наименьшем расстоянии(в сантиметрах) нужно расположить экран в, высотой 400 см, чтобы он полностью был освещён, если настройки проектора остаются неизменными? , . заранее !

(в декартовых координатах) определяет плоскость. Если в этом уравнении отсутствует свободный член (D=0), то плоскость проходит через начало координат. Если отсутствует член с одной из текущих координат (то есть какой-либо из коэффициентов A, B, C равен нулю), то плоскость параллельна одной из координатных осей, именно той, которая одноименна с отсутствующей координатой; если, кроме того, отсутствует свобдный член, то плоскость проходит через эту ось. Если в уравнении отсутствуют два члена с текущими координатами (какие-либо два из коэффициентов A, B, C равны нулю), то плоскость параллельна одной из координатных плоскостей, именно той, которая проходит через оси, одноименные с отсутствующими координатами; если, кроме того, отсутствует свободный член, то плоскость совпадает с этой координатной плоскостью.
Если в уравнении плоскости

ни один из коэффициентов A, B, C не равен нулю, то это уравнение может быть преобразовано к виду
 (1)
где
, , 
суть величины отрезков, которые плоскость отсекает на координатных осях (считая каждый от начала координат). Уравнение (1) называется уравнением плоскости «в отрезках».