(0;2]U[4;6)
Пошаговое объяснение:
ОДЗ:
{x > 0;
{6–x > 0 ⇒ x < 6
{(x4–12x3+36x2) > 0⇒ (x·(6–x))2 > 0 ⇒ x≠0; x≠6
ОДЗ: х∈(0;6)
при х∈(0;6):
log2(x4–12x3+36x2)=log2x2·(6–x)2=
log2(x·(6–x))2=2log2x·(6–x)=2log2x+2log2(6–x)
Неравенство принимает вид:
(2–log2x)·(log2(6–x)–2) ≥ 0
Применяем обобщенный метод интервалов
log2x=2 или log2(6–x)=2
x=4 или 6–х=4;х=2
При х=1
(2–log21)·(log2(6–1)–2)=2·(log25–log24) > 0
При х=3
(2–log23)·(log2(6–3)–2)=–(2–log23)2 < 0
При х=5
(2–log25)·(log2(6–5)–2)=(log24–log25)·(0–2) > 0
(0)__+__ [2]__–__[4]__+__ (6)
Поделитесь своими знаниями, ответьте на вопрос:
Вычисли площадь и периметр фигуры, состоящей из двух прямоугольников с одинаковой площадью, равной 24 см².
Площадь 48 см²
Периметр 34 см
Пошаговое объяснение:
Площадь фигуры (см. приложенный рисунок), состоящей из двух прямоугольников с одинаковой площадью, равной 24 см² равна сумме площадей обоих прямоугольников: 24 см² + 24 см² = 48 см².
Для вычисления периметра фигуры запишем все значения сторон как показано на рисунке и найдем сумму:
8 см+3 см+1 см+6 см+4 см+6 см+3 см+3 см= 34 см.