1)P(X=0)=0,1*0,2*0,3=0,006
P(X=1)=0,9*0,2*0,3+0,1*0,8*0,3+0,1*0,2*0,7
P(X=2)=0,9*0,8*0,3+0,9*0,2*0,7+0,1*0,8*0,7
P(X=3)=0,9*0,8*0,7
2)ответ:
X 0 1 2 3 4
0,4096
0,4096
0,1536
0,0256
0,0016
3)Обозначим X - число опробованных ключей. Данная случайная величина может принимать следующие значения:
{X=1} - испробовали только один ключ (первый ключ является подходящим)
{X=2} - испробовали два ключа (первый ключ не подошел, второй ключ является искомым)
{X=3}- испробовали три ключа (первые два ключа не подошли, третий ключ является искомым)
{X=4]- испробовали четыре ключа (первые три ключа не подошли, четвертый ключ является искомым)
P(X=1) = 1/4
P(X=2) = 3/4*1/3 = 1/4
P(X=3) = 3/4*2/3*1/2 = 1/4
P(X=4) = 3/4*2/3*1/2*1 = 1/4
Ряд распределения случайной величины имеет вид
1 2 3 4
1/4 1/4 1/4 1/4
M(X) = 1*1/4 + 2*1/4 + 3*1/4 + 4*1/4 = 10/4
M(X^2) = 1*1/4 + 4*1/4 + 9*1/4+ 16*1/4 = 30/4
D(X) = M(X^2) - (M(X))^2 = 30/4 - 10/4 = 5
Функция распределения случайной величины имеет вид
{0, 0<=X<1
{1/4, 1<=X<2
F(X) = {2/4, 2<=X<3
{3/4, 3<=X<4
{0, X>=4
4)
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Для лакування підлоги в кімнаті використали 2, 4 кг лаку. скільки потрібно кілограмів лаку, щоб полакувати підлогу в коридорі, довжина якого вдвічі більша від довжини кімнати, а ширина утричі менша від ширини кімнати? іть будь ласка дякую.
Логарифмический ноль. Элементарное свойство, которое нужно обязательно помнить. Какое бы ни было основание логарифма, если в аргументе стоит 1, то логарифм всегда равен 0.
Логарифмическая единица. Еще одно простое свойство: если аргумент и основание логарифма одинаковы, то значение логарифма будет равно единице.
Основное логарифмическое тождество. Отличное свойство, превращающее четырехэтажное выражение в простейшую b. Суть этой формулы: основание a, возведенное в степень логарифма с основанием а, будет равно b.
Сумма логарифмов. При умножении логарифмируемых чисел, можно сделать из них сумму 2х логарифмов, у которых будут одинаковые основания. И так невычислимые логарифмы становятся простыми.
Логарифм частного. Здесь ситуация схожая с суммой логарифмов. При делении чисел мы получаем разность двух логарифмов с одинаковым основанием.
Вынесение показателя степени из логарифма. Тут действуют целых 3 правила. Все просто: если степень находится в основании или аргументе логарифма, то ее можно вынести за пределы логарифма, в соответствии с этими формулами
Формулы перехода к новому основанию. Они нужны для выражений с логарифмами, у которых разные основания. Такие формулы в основном используются при решении логарифмических неравенств и уравнений.
Пошаговое объяснение: