1) 52 х 5 = 260 ц с 1 участка
2) 52 х 4 = 208 ц вывезли со 2 участка
3) 260 +208 = 468 ц вывезли с двух участков
При выяснении вопроса о применимости векторного метода к решению той или иной задачи, необходимо установить возможность выражения всех данных соотношений между известными и искомыми величинами на языке векторов. Если это можно сделать без больших затруднений, то есть смысл при решении такой задачи использовать векторы.
Решение геометрических задач с векторов протекает успешнее, если вы будете придерживаться общих правил поиска решения. Полезно использовать девять таких правил:
1. Начиная решать задачу, посмотрите, что дано и что требуется доказать; отделите условие задачи от ее заключения; запишите условие и заключение задачи через общепринятые обозначения.
2. Выясните все (по возможности) соотношения, из которых следует заключение задачи; запишите их в векторной форме.
3. Сопоставьте каждое из рассматриваемых соотношений с тем, что дано, и с рисунком и посмотрите, какое из них лучше выбрать для доказательства.
4. Из того, что дано, получите следствия, которые связаны (или могут быть связаны) с выбранным вами соотношением.
5. Выделяя на рисунке векторы, входящие в выбранное вами соотношение, постоянно задавайте себе вопрос: «Через какие векторы можно их выразить? » Для ответа на поставленный вопрос рассматривайте эти векторы во всех целесообразных (обнадеживающих) соотношениях с другими.
6. Если для выражения вектора через другие нужно сделать дополнительные построения на рисунке, сделайте их так, чтобы это выражение было наиболее простым.
7. Постоянно помните, что дано в условии задачи, и в случае затруднений проверьте, не упустили ли вы что-либо из условия.
8. Так как затруднения могут быть связаны также с тем, что вы не применили какую-либо задачу или теорему, то в случае затруднения постарайтесь мысленно перебрать известные вам теоремы и решенные задачи и подумать, нельзя ли воспользоваться какой-нибудь из них.
9. Если выбранное вами соотношение (по правилу 2) не удалось доказать, применив все правила 4-8, то выберите другое и снова выполняйте правила 4-8 уже относительно него.
Пошаговое объяснение:
I. Для овладения умением переходить от геометрического языка к векторному и обратно необходимо знать, как то или иное векторное соотношение выражается на геометрическом языке. Например:
а) Равенство = k (k –некоторое число) , означает, что прямые АВ и СД параллельны.
б) Равенства = m/n и = n/(m+n) + m/(m+n) , (m,n –некоторые числа, Q –произвольная точка плоскости) означают, что точка С делит некоторый отрезок АВ в отношении m к n, т. е. AC : CB = m : n. При этом точка Q может быть выбрана так, чтобы последнее равенство доказывалось наиболее просто (это равенство следует из теоремы о делении отрезка в данном отношении) .
в) Каждое из равенств = k1 , = k2 , = k3 , = p +q (где k1, k2, k3, p, q - некоторые числа, p+q=1, Q – произвольная точка плоскости) , a +b +g = 0 (a, b, g - некоторые числа, a+b+g = 0, Q -произвольная точка плоскости) означает принадлежность трех точек А, В, С одной прямой (два последних равенства следуют из теоремы о принадлежности трех точек одной прямой) .
г) . Равенство . = 0, где A ¹ B; C¹D, означает, что прямые АВ и СД перпендикулярны. (Указанное равенство следует из свойств скалярного произведения векторов.)
Задача 1. Из n аккумуляторов за год хранения k выходит из строя. Наудачу выбирают m аккумуляторов. Определить вероятность того, что среди них l исправных.
n=100,k=7,m=5,l=3.
Пример решения по формуле Бернулли
Задача 2. Устройство, состоящее из пяти независимо работающих элементов, включается за время Т. Вероятность отказа каждого из них за это время равна 0,2. Найти вероятность того, что откажут:
а) три элемента;
б) не менее четырех элементов;
в) хотя бы один элемент.
Решение примера на формулу Бернулли
Задача 3. Сколько следует сыграть партий в шахматы с вероятностью победы в одной партии, равной 1/3, чтобы наивероятнейшее число побед было равно 5?
Решение задачи на формулу наивероятнейшего числа
Задача 5. Пусть вероятность того, что телевизор потребует ремонта в течение гарантийного срока, равна 0,2. Найти вероятность того, что в течение гарантийного срока из 6 телевизоров: а) не более одного потребует ремонта; б) хотя бы один не потребует ремонта.
Посмотреть решение задачи на формулу Бернулли
Задача 6. Что более вероятно выиграть у равносильного противника: не менее двух партий из трёх или не более одной из двух?
Решение задачи об игре на формулу Бернулли
Задача 7. а) Найти вероятность того, что событие А появится не менее трех раз в четырех независимых испытаниях, если вероятность появления события А в одном испытании равна 0,4;
б) событие В появится в случае, если событие А наступит не менее четырех раз. Найти вероятность наступления события В, если будет произведено пять независимых испытаний, в каждом из которых вероятность появления события А равна 0,8.
Решение задачи 113 (Гмурман)
Формула Пуассона: решенные задачи
Задача 4. С базы в магазин отправлено 4000 тщательно упакованных доброкачественных изделий. Вероятность того, что изделие повредится в пути, равна 0.0005. Найти вероятность того, что из 4000 изделий в магазин прибудут 3 испорченных изделия.
Решение задачи на приближенную формулу Пуассона
Задача 8. В банк отправлено 4000 пакетов денежных знаков. Вероятность того, что пакет содержит недостаточное или избыточное число денежных знаков, равна 0,0001. Найти вероятность того, что при проверке будет обнаружено:
а) три ошибочно укомплектованных пакета;
б) не более трех пакетов.
Поделитесь своими знаниями, ответьте на вопрос:
Фермер вывез на грузовой машине катрофель двух участков : с 1 -за 5 рейсов со второго -за 4 рейса . сколько всего килограммов картофеля было вывезено с этих участков если за каждый рейс перевозили по 52 центнеракартофеля?
1)5*52=260ц(26000кг)-вывезли с 1-ого участка.
2)4*52=208ц(208000кг)-вывезли со 20ого участка.
3)260+208=468ц(468000кг)-вывезли с двух участков.