stachevay-lera
?>

Мне! по рисунку составить выражение и найди его значение.

Математика

Ответы

kotofei147516

20-5=15

16+4=20

20-4=16

17+3=20

ЮрьевичКарпова1564

x₁=2; x₂=0,5(3+√29); x₃=0,5(3-√29),

Пошаговое объяснение:

f(x)=x³-5x²+x+10=0;

найдем хотябы один корень уравнения, для чего выпишем все целые делители свободного члена:

10: ±1, ±2, ±5, ±10.

Методом подбора в многочлен x³-5x²+x+10=0 :

1: 1-5+1+10≠0;

-1: -1-5-1+10≠0;

2: 2³-5*2²+2+10=8-20+2+10=0.

О! Зачит 2 - один из корней уравнения. Понижаем степень. Многочлен будет иметь вид:

(х-2)P(x)=0, где

Р(х) - многочлен второй степени, Р(х)=f(x)/(x-2).

Разделим f(x) на (x-2):

x³-5x²+x+10 l x-2

x³-2x²          l x²-3x-5

   -3x²+x    

    -3x²+6x        

            -5x+10

            -5x+10    

                     0

x³-5x²+x+10=(x-2)(x²-3x-5)=0;

x²-3x-5=0; D=9+20=29; x₁₂=0,5(3±√29)

x₁=2; x₂=0,5(3+√29); x₃=0,5(3-√29),

Анастасия1097
Билет №1
Теоретическая часть.
1. Вопрос: Какая функция является линейной?
ответ: Линейной является функция вида: f=kx+b.
2. Вопрос: Как умножить степени с одинаковыми основаниями?
ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней.
Билет №2:
Теоретическая часть.
1. Вопрос: Что является графиком линейной функции? Как можно построить такой график?
ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой.
2. Вопрос: Как разделить степени с одинаковыми основаниями?
ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним.
Билет №3
Теоретическая часть.
1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат:
ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

Примеры.

1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.

Решение:

В точке пересечения графика функции с осью Ox y=0:

kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
В точке пересечения с осью Oy x=0:

y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
2. Вопрос: Как возвести степень в степень?
ответ: Чтобы возвести степень в степень нужно перемножить степени. Например:
( {x}^{2} ) ^{2}= {x}^{4}
P. s: Решать практическую часть не буду, т.к могу ошибиться...

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Мне! по рисунку составить выражение и найди его значение.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

pifpaf85
swetlanafatinia7323
Шеина
Роман1406
mshelen732
Ye.Vadim
rina394992
podenkovaev314
fil-vasilij90
ekrosenergoserv
Сороченкова-Александр
Kalashnikova
tushina2020
Kalugin Vyacheslavovna605
Semenovt