av4738046
?>

Б)составь и реши задачу по выражению32*3-24*2как решить задачу?​

Математика

Ответы

v-zhigulin1

32 умнож на 3 и 24 умнож на 2 и потом который ответь будет их минусуешь

Кочугурова

Пошаговое объяснение:

Задача:

Мама купила в магазине 3 кг бананов по 32 рубля и 2 кг яблок по 24 рубля. На сколько дороже стоят 3 кг бананов, чем 2 кг яблок?

32*3 - 24*2 = 96 - 48 = 48 (руб) - на 48 рублей стоят дороже 3 кг бананов, чем 2 кг яблок

margarita25061961

Находим абсциссы точек пересечения прямых с осью Ох.

x-2y+4=0, y=0, х = -4.

y=2x+3, y=0, х = -3/2 = -1,5.

Теперь определяем точку пересечения прямых.

Первую прямую выразим относительно у =(1/2)х + 2

(1/2)х+2=2x+3,

1,5х = -1,

х = -2/3.


Теперь можно переходить к площади.

Заданная фигура состоит из двух частей.

Первая S1 - ограничена прямой у = (1/2)х + 2, осью Ох и двумя прямыми х = -4, х = -1,5.

Вторая S2- заключена между наклонными прямыми и прямыми х = 1,5 и х = -2/3.


S_1=\int\limits^{-1,5}_{-4} {(\frac{1}{2}x+2)} \, dx =\frac{x^2}{4} +2x|_{-4}^{-1,5}=0,3333+0,1875=0,520833.

S_2=\int\limits^{-2/3}_{-1,5} {(0,5x+2-(2x+3))} \, dx =\int\limits^{-2/3}_{-1,5} {(-1,5x-1)} \, dx =-\frac{3x^2}{4}-x|_{-1,5}^{-2/3}=-2,4375+4=1,5625.

Получаем ответ: S = 0,520833+1,5625 = 2,083333 = 25/12.


этот результат легко проверить:

S = (1/2)*2.5*(5/3) = 25/12.

Здесь (5/3) - ордината точки пересечения прямых.


Вычислите площадь фигуры, ограниченной линиями x-2y+4=0, y=2x+3, y=0 (через интеграл + график если м
ikosheleva215

Находим абсциссы точек пересечения прямых с осью Ох.

x-2y+4=0, y=0, х = -4.

y=2x+3, y=0, х = -3/2 = -1,5.

Теперь определяем точку пересечения прямых.

Первую прямую выразим относительно у =(1/2)х + 2

(1/2)х+2=2x+3,

1,5х = -1,

х = -2/3.


Теперь можно переходить к площади.

Заданная фигура состоит из двух частей.

Первая S1 - ограничена прямой у = (1/2)х + 2, осью Ох и двумя прямыми х = -4, х = -1,5.

Вторая S2- заключена между наклонными прямыми и прямыми х = 1,5 и х = -2/3.


S_1=\int\limits^{-1,5}_{-4} {(\frac{1}{2}x+2)} \, dx =\frac{x^2}{4} +2x|_{-4}^{-1,5}=0,3333+0,1875=0,520833.

S_2=\int\limits^{-2/3}_{-1,5} {(0,5x+2-(2x+3))} \, dx =\int\limits^{-2/3}_{-1,5} {(-1,5x-1)} \, dx =-\frac{3x^2}{4}-x|_{-1,5}^{-2/3}=-2,4375+4=1,5625.

Получаем ответ: S = 0,520833+1,5625 = 2,083333 = 25/12.


этот результат легко проверить:

S = (1/2)*2.5*(5/3) = 25/12.

Здесь (5/3) - ордината точки пересечения прямых.


Вычислите площадь фигуры, ограниченной линиями x-2y+4=0, y=2x+3, y=0 (через интеграл + график если м

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Б)составь и реши задачу по выражению32*3-24*2как решить задачу?​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

aidapiltoyan43
lidiya08083268
stertumasova29
dimalihachew
Mikhail1369
rusvicktor
valera850515
okarp
kotovayaanastasia2069
Сергей_Крутикова114
flerbuket332
sv-opt0076
olesya-kwas
Сурат1199
selena77