ответ: во вложении Пошаговое объяснение:
<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но
< DAM=<BAM, т.к. АМ - биссектриса, значит
<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.
<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но
<ADM=CDM, т.к. DM - биссектриса, значит
<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.
АВ=CD=BM=CM
Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:
АВ=AN-BN, BN=AN-AB=10-x
Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:
- ВМ=СМ;
- <BMN=<CMD как вертикальные углы;
- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит
BN=CD=x
Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:
10-х=х
2х=10
х=5
АВ=CD=5 см, AD=BC=5+5=10 см
Р ABCD = 2AB+2BC=2*5+2*10=30 см
Поделитесь своими знаниями, ответьте на вопрос:
Среди данных углов а)30+360*N, где NЭZб)270+360*N, где NЭZв)-120+360*N, где NЭZг)-270+360*N, где NЭZд) 400+360*N, где NЭZе)-700+360*N, где NЭZнайдите угол, абсолютная величина которого наименьшая с объяснениями
Пошаговое объяснение:
выпишем наименьшие по модулю углы для каждого пункта
а) при n = 0 |α| = 30, при n > 0 |α| ≥ 390 и при n < 0 |α| ≥ 330
б) при n = -1 |α| = 90, при n > -1 |α| ≥ 270 и при n < -1 |α| ≥ 450
в) при n = 0 |α| = 120, при n > 0 |α| ≥ 240 и при n < 0 |α| ≥ 480
г) при n = 1 |α| = 90, при n > 1 |α| ≥ 450 и при n < 1 |α| ≥ 270
д) при n = -1 |α| = 40, при n > -1 |α| ≥ 400 и при n < -1 |α| ≥ 320
е) при n = 2 |α| = 20, при n > 2 |α| ≥ 380 и при n < 2 |α| ≥ 340
если нужно выбрать наименьший среди всех пунктов, то это
е) при n = 2 |α| = 20, при n > 2 |α| ≥ 380 и при n < 2 |α| ≥ 340