Viktorovna_Yurevna
?>

Коля заплатил за цветные наклейки 27 рублей. Сколько Коля купил наклеек, если известно, что цена 1 такой наклейки 3 рубля?

Математика

Ответы

papanovar

ответ: 9.

27 : 3 = 9.

Пошаговое объяснение:

Николаевич-Золотая832

Пошаговое объяснение:

27/3= 9

mnkrasnova

Возьмите тонкую нитку. Обхватите ею ведро. Отрежьте нитку (можно просто пальцами зажать) на том месте, где концы нитки сошлись. Измерьте получившийся кусок нитки - это будет длина окружности - L.

Затем еще одним куском нитки измерьте диаметр ведра: т.е. протяните нитку поперек ведра в самом широком месте. Верхняя его чать представляет собой окружность. Это будет диаметр ведра - D.

Поделите полученное значение L на D. Если все измерили правильно, должны получить число, примерно равное числу пи - т.е. в районе 3.

svetlanadianowa

ответ: 43

Пошаговое объяснение:

p^3 + 4p^2 + 4p = p(p+2)^2

Пусть p нечетно, то есть p отлично от двух, тогда p и p+2 - взаимнопростые.

У простого числа p два делителя: p и 1, тогда поскольку 1 единственный общий делитель с p+2 или (p+2)^2, то если (p+2)^2 имеет n делителей:

d1=1,d2,d3,...,dn = (p+2)^2, то число p(p+2)^2 имеет делители:

d1=1, d2, d3,..., dn = (p+2)^2, pd1=p, pd2, pd3,..., pdn = p(p+2)^2 - имеет 2n делителей, тогда (p+2)^2 имеет ровно 30/2 =  15 делителей.

Пусть: p1, p2, p3,..., pk - простые делители числа (p+2)^2 в произвольном порядке, а поскольку (p+2)^2 - полный квадрат, то каждое простое число из множества p1, p2, p3,..., pk встречаются четное число раз в разложении числа (p+2)^2 на простые множители.

Пусть каждое из чисел p1, p2, p3,..., pk встречается :

2n1, 2n2, 2n3,..., 2nk  раз cоответственно, тогда из комбинаторных соображений общее число делителей числа (p+2)^2 равно: (у числа p+2 они встречаются n1,n2,n3,..., nk раз)

(2n1 + 1)(2n2+1)(2n3 + 1)...(2nk + 1) = 15 = 5*3

5*3 имеет 4 положительных делителя: 1,3,5,15. 1 не подходит, ибо                2ni + 1 >=3

То есть имеем два варианта. У числа (p+2)^2 только 2 простых делителя, каждый из которых встречается n1 и n2 раза:

2n1 + 1 = 3

n1 = 1

2n2 + 1 = 5

n2 = 2

Иначе говоря:

p+2 = p1*p2^2

Или второй вариант:

у числа (p+2)  один простой делитель, что встречается n1 раз :

2n1 +1 = 15

n1 = 7

p+2 = p1^7

Рассмотрим первый случай:

p+2 = p1*p2^2

p = p1*p2^2 - 2

Минимально возможные нечетные p1 и p2: p1 = 3; p2 = 5.

Нетрудно заметить, что 5*3^2 - 2 = 43 - простое, а значит

p = 5*3^2 - 2 = 43 - минимальное нечетное простое число удовлетворяющее условию при данном варианте.

Второй случай рассматривать нет смысла, ибо :

p = p1^7 - 2 >= 3^7 - 2 > 43

Осталось проверить тривиальный случай p = 2

p(p+2)^2 = 2*4^2 = 2^5 - имеет 6 делителей.

Таким образом, наименьшее простое число p такое, что p^3+4p^2+4p имеет ровно 30 положительных делителей это 43.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Коля заплатил за цветные наклейки 27 рублей. Сколько Коля купил наклеек, если известно, что цена 1 такой наклейки 3 рубля?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Владислав-Аветисян217
Tkachenko1050
АндреевичАндрей
impuls20125948
Viktoriya
Голосова-Лобанов1555
arturcristian
bk4552018345
Mydariamiro
Ivanskvortsov25
verachus
cmenick29
v79150101401
Екатерина_Кирушев
ellyb106786