Yelena Dilyara
?>

518.204766.530283410:603166520:724435.87608.955476:3712 098:46​

Математика

Ответы

abramovae

518*204 =105672

766*530 =405980

283410:603= 470

166520:724 =230

435*87 =37845

608*95 =57760

5476:37 =148

12 098:46=​263

по-моему точка это умножение

Lyubov214

8

Пошаговое объяснение:

Логично предположить, что 32 фуксиков складывается из самых мелких монет А.

Значит 32 делится на А

Подберём числа А:

32:1=32

32:2=16

32:4=8

32:8=4

32:16=2

32:32=1

Из данных чисел выберем подходящие:


32 не подходит ( т.к из монет 32,33,34 нельзя сложить 35)

16 -не подходит (т.к. из монет 16,17,18 нельзя сложить 39)

4 -не подходит ( т.к. из монет 4,5,6 можно сложить 31)

2 -не подходит (т.к из чисел 2,3,4 можно сложить 31)

1-не подходит (т.к. из 1,2,3 можно сложить 31)


Методом подбора определили, что А=8 фоксиков


А+1=8+1=9 фоксика

А+2=8+2=10 фоксиков


Проверка:

31-8-8-8=7

31-10-8-8=5

31-9-8-8=6 т.д.

Вывод: монетами 8,9,10 сумму 31 набрать нельзя.


8+8+8+8=32

8+8+8+9=33

8+8+8+10=34

8+8+9+10=35

8+9+9+10=36

9+9+9+10=37

9+9+10+10=38

9+10+10+10=39

10+10+10+10=40

8+8+8+8+9=41

и т.д.

ответ: А=8 фуксиков

armentamada1906

Поскольку равенство симметрично, можно без ограничения общности считать, что x ≤ y ≤ z. Положим y = x + k, а z = x + m, где k и m - неотрицательные целые. Тогда 4(x + y + z) = xy + yz + zx => 4(x + x + k + x + m) = x*(x + k) + x*(x + m) + (x + k)*(x + m) => 4(3x + k + m) = x^2 + kx + x^2 + mx + x^2 + mx + kx + km => 12x + 4(k + m) = 3x^2 + 2x(k + m) + km => 3x^2 + 2x(k + m) - 12x + km - 4(k + m) = 0 => 3x^2 + (2(k + m) - 12)x + km - 4(k + m) = 0. Получили квадратное относительно x уравнение. Находим дискриминант: D = (2(k + m) - 12)^2 - 12(km - 4(k + m)) = 4k^2 + 4km + 4m^2 - 48k - 48m + 144 - 12km + 48k + 48m = 4k^2 + 4m^2 - 8km + 144. Поскольку x у нас натуральное, дискриминант должен являться полным квадратом. Сразу видим, что поскольку 4k^2 + 4m^2 - 8km = 4(k^2 + m^2 - 2km) = 4(k - m)^2, то при k = m, D = 144. Тогда наше решение будет x(1,2) = -((2(k + m) - 12) ± √144)/6, отсюда x1 = (12 + 12 - 2(k + m))/6 = (24 - 2(k+m))/6 = (24 - 4k)/6. Отсюда видно, что x1 будет натуральным при k = 0 и k = 3. Его значения будут равны соответственно x1 = 4 и x1 = 2. Второй корень x2 =  (12 - 12 - 2(k + m))/6 = -(k + m)/3 отрицательный и нам не подходит. Тогда, в случае k = m, имеем следующие наборы возможных решений (x, y, z) = (4, 4, 4), (x, y, z) = (2, 5, 5). Непосредственной проверкой убеждаемся, что решение (2, 5, 5) нам не подходит. Т. о. в случае, когда k = m имеем одно решение x = y = z = 4. Обратимся снова к дискриминанту: D = 4k^2 + 4m^2 - 8km + 144. Пусть теперь k ≠ m. Рассмотрим выражение 4k^2 + 4m^2 - 8km = 4(k^2 + m^2 - 2km) = 4(k - m)^2 = 4(k - m)*(k - m). Как было сказано выше, D в нашем случае должен являться полным квадратом. Т. е. D = 4(k - m)*(k - m) + 144 = a^2 =>  4(k - m)*(k - m) = a^2 - 144 = (a - 12)*(a + 12). Отсюда имеем всего одну возможность: a - 12 = k - m и a + 12 = 4(k - m) = 4(a - 12) => 4a - a = 48 + 12 => 60 = 3a => a = 60/3 = 20. Т. о. дискриминант D = 4k^2 + 4m^2 - 8km + 144 = 20^2 = 400 => 4(k^2 + m^2 - 2km) + 144 = 400 => 4(k^2 + m^2 - 2km) = 256 => k^2 + m^2 - 2km = 256/4 = 64 => (k - m)^2 = 64 => k - m = 8 и k = m + 8. Т. о. при неотрицательных целых m, нам подходят k = m + 8. Ввиду симетрии уравнения, обратное ведет к одинаковым решениям. Общее решение имеет вид x(1,2) = -((2(k + m) - 12) ± √400)/6. Рассмотрим граничные значения k и m, при которых дискриминант остается неотрицательным. D ≥ 0 при |12 - 2(k + m)| ≤ 20. Этому условию соответствуют пары (k, m) = (8, 0), (9, 1), (10, 2), (11, 3) и (12, 4). Соответствующие значения x будут 16/6, 2, 8/6, 2/3 и 0. Из этих значений x нам подходит лишь одно x = 2. При x = 2, y = x+ k = 2 +9 = 11, z = x + m = 2 + 1 = 3 и мы получаем тройку (x, y, z) = (2, 11, 3). Проверим это решение. Левая часть уравнения 4(x + y + z) = xy + yz + zx  является четным числом, тогда как правая при нечетных y и z будет нечетной. Следовательно, данное решение нам не подходит. Т. о. получаем, что единственным решением данного уравнения является тройка чисел (x, y, z) = (4, 4, 4).

ответ: (x, y, z) = (4, 4, 4).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

518.204766.530283410:603166520:724435.87608.955476:3712 098:46​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

osipovasalex5316
Джулия
Марюк-Мубариз
akakne86
Vitalik6928
molodoychek
ПетросовичЗаславский
generallor3
Andrei
vkaloshin
Ka-tja78
sanseth5
Краева
Шмидт Ирина
juliajd