IInessa44478
?>

Ребятки, выручайте Исследовать на сходимость указанные ряды с положительными членами

Математика

Ответы

ashybasaida-33
Начнём с конца, когда раздавали по 4 яблока.

Если 15 оставшихся яблок последовательно раздать детям, то двум последним не хватит, так как если у последнего взять одно яблоко и отдать предпоследнему, то, как раз и окажется, что всем, кроме последнего досталось по 5 яблок, а у последнего будет только 3.

Значит детей на два больше, чем 15, итак детей – 17.

Значит яблок 17*4+15 = 68+15 = 83.

Заметим, что если бы яблок было 85, то их можно было бы раздать поровну всем по 5 яблок.

Но их всего 83, поэтому последнему достанется только 3 яблока, если всем предыдущим раздать по 5, как это и сказано в условии.

О т в е т : 83 яблока на 17 детей.
Nikolaevna Malika1511
Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение t^2 - 8 t + [7-a] = 0 , где под t подразумевается квадрат переменной x^2 , т.е. t = x^2 , а его корнями t_{1,2} – квадраты искомых корней, если они различны, или его чётным корнем t_o = x^2_{1,2} , если корень биквадратного трёхчлена t_o – единственный.

Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле D_1 = ( \frac{b}{2} )^2 - ac , тогда D_1 = 4^2 - [7-a] = 9 + a . Потребуем, чтобы D_1 \geq 0 , откуда следует, что 9 + a \geq 0 ; \ \ \Rightarrow a \geq -9 .

Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при a = -9 , а корень биквадратного трёхчлена станет чётным t_o = 4 , давая два искомых корня x_{1,2} = \pm 2 . Это значение a = -9 как раз уже и есть одно из искомых решений для параметра a .

Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней x^2 , всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней x^2 , по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно -\frac{b}{2} = -\frac{-8}{2} = 4 . Отсюда следует, что правый квадрат искомых корней x^2 , – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.

Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки x = 0 . А значит, значение всего трёхчлена x^4 - 8 x^2 + [7-a] взятое от x = 0 должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.

Отсюда: 0^4 - 8 \cdot 0^2 + [7-a] < 0 ;

7 - a < 0 ;

a 7 ;

О т в е т : a \in \{ -9 \} \cup ( 7 ; +\infty ) .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Ребятки, выручайте Исследовать на сходимость указанные ряды с положительными членами
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Pautova1119
vsemvsego306
ukkavtodor6
Zebra198383
Styazhkin395
anna241273
anatolevich1931
simonovaliubov5852
Linichuk
yuliyaminullina
vikabobkova2010
rytikovabs
pannotolstova488
ti2107
Конычева-музей&quot;260