На множествах A={a, b, c}, B={1, 2, 3}, C={α, β, γ} заданы бинарные отношения vа . Определить композицию этих отношений R1={(b, 3), (b, 2), (b, 1)}, R2={(2, β), (2, γ), (3, α)} eta diskret matematika pajalusta pamagite kto pomojet
1. НЕВЕРНО, т.к. по свойству описанного четырехугольника для этого должны быть равны суммы противоположных сторон, это не всегда будет так. 2. Около любого правильного многоугольника: 1) либо нельзя описать окружность. 2) можно описать не более одной окружности. Утверждение 1 не противоречит второму, т.е. ВЕРНО. 3. ВЕРНО, есть такая теорема. 4.НЕВЕРНО, пересечение серединных перпендикуляров - центр описанной окружности, а вписанной - биссектрис. 5. ВЕРНО. Треугольник со сторонами 3,4 и 5 - прямоугольный (по обратной т. Пифагора) => центр описанной окружности лежит на середине гипотенузы. 6. ВЕРНО, т.к. диагональ делит квадрат на 2 прямоугольных треугольника, далее как в 5. 7. НЕВЕРНО, т.к. свойство вписанного четырехугольника говорит о том, что суммы противоположных углов равны 180, а это не всегда так.
vladimirdoguzov
24.03.2021
1. НЕВЕРНО, т.к. по свойству описанного четырехугольника для этого должны быть равны суммы противоположных сторон, это не всегда будет так. 2. Около любого правильного многоугольника: 1) либо нельзя описать окружность. 2) можно описать не более одной окружности. Утверждение 1 не противоречит второму, т.е. ВЕРНО. 3. ВЕРНО, есть такая теорема. 4.НЕВЕРНО, пересечение серединных перпендикуляров - центр описанной окружности, а вписанной - биссектрис. 5. ВЕРНО. Треугольник со сторонами 3,4 и 5 - прямоугольный (по обратной т. Пифагора) => центр описанной окружности лежит на середине гипотенузы. 6. ВЕРНО, т.к. диагональ делит квадрат на 2 прямоугольных треугольника, далее как в 5. 7. НЕВЕРНО, т.к. свойство вписанного четырехугольника говорит о том, что суммы противоположных углов равны 180, а это не всегда так.
2. Около любого правильного многоугольника: 1) либо нельзя описать окружность. 2) можно описать не более одной окружности. Утверждение 1 не противоречит второму, т.е. ВЕРНО.
3. ВЕРНО, есть такая теорема.
4.НЕВЕРНО, пересечение серединных перпендикуляров - центр описанной окружности, а вписанной - биссектрис.
5. ВЕРНО. Треугольник со сторонами 3,4 и 5 - прямоугольный (по обратной т. Пифагора) => центр описанной окружности лежит на середине гипотенузы.
6. ВЕРНО, т.к. диагональ делит квадрат на 2 прямоугольных треугольника, далее как в 5.
7. НЕВЕРНО, т.к. свойство вписанного четырехугольника говорит о том, что суммы противоположных углов равны 180, а это не всегда так.