Найти длину дуги кривой φ= от r=1 до r=3 С РЕШЕНИЕМ (В полярных координатах, r-полярный радиус, φ - полярный угол) ( задача 1684 из Демидовича для втузов(4 издание) )
Подставим пределы интегрирования. получим 3²/4+(ln3)/2-(1/4-ln1)=
8/4-(ln3)/2=2-(ln3)/2
Kozloff-ra20146795
31.12.2021
На циферблате имеется 60 делений, на которые приходится 360 градусов. Значит, когда стрелка пройдёт 1 деление, то она переместиться на 360:60=6 градусов. Минутная стрелка за 15 мин пройдёт 6*15=90 градусов. Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений. 5 делений - 1 час (60 мин) х делений - 15 минут х=5*15:60=1,25 (делений) Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут): 1 деление - 6 градусов 1,25 делений - х градусов х=1,25*6:1=7,5 (градусов) Угол между минутной и часовой стрелками составляет 90-7,5=82,5 градусов=82 градуса 30 минут
lepekhov4011
31.12.2021
ДУМАЕМ 1)Догонят из-за разности скоростей. 2) Второму надо проехать больше - третий за 15 минут уедет. РЕШАЕМ Время встречи первого - догнал третьего. t(1,3) = S / (V1-V3) = 30/(15-9) = 5 часов - Переводим 15 мин = 0,25 часа. Вычисляем путь третьего за 0,25 часа S3 = V3*t3 = 9*0.25 = 2.25 км. Время встречи встречи второго - догнал третьего t(2,3) = (S +S3)/(V2-V3) =(30+2.25)/(15-9) = 5.375 час = 5 час 22.5 мин. Интервал будет в 22.5 мин. - УРА!, но не правильно. ДУМАЕМ ещё сильнее. НАДО найти ИНТЕРВАЛ времени, который возник из-за разности путей после разного времени старта t3=15 мин за счет разности скоростей 15-9. РЕШАЕМ В ОДНО УРАВНЕНИЕ. dT= (V3*t3) / (V2-V3) = 9*0.25/(15-9) = 9/6*0.75= 0.375 час = 22,5 мин. Вот это ПРАВИЛЬНОЕ решение
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти длину дуги кривой φ= от r=1 до r=3 С РЕШЕНИЕМ (В полярных координатах, r-полярный радиус, φ - полярный угол) ( задача 1684 из Демидовича для втузов(4 издание) )
α=(1/2)*(r+1/r)
Используем формулу длины дуги кривой (1),
/не нашел фи, вместо нее в формулу поставил альфа/, получим
α'=(1/2)*(1-(1/r²))=1/2-(1/(2r²)
α'²=(1/4+(1/(4r⁴))-1/(2r²))
r²α'²+1=(r²/4)+(1/(4r²))-(1/(2)+1=(r²/4)+(1/(4r²))+(1/(2)=((r/2)+(1/(2r)))²
√((r/2)+(1/(2r)))²=(r/2)+(1/(2r)
Подставим пределы интегрирования. получим 3²/4+(ln3)/2-(1/4-ln1)=
8/4-(ln3)/2=2-(ln3)/2