Ekaterina1654
?>

45 ∙ 58 + 34 ∙ 45 + 8 ∙ 45 – 13400 ∶ (67 ∙ 78 – 68 ∙ 67)=?

Математика

Ответы

mskatrinmadness

ответ 4480 объеснение тут не нужно.

zorinka777

(58+34+8)×45-13400:((78-68)×67)=100×45-13400:(10×67)=4500-13400:670=4500-20=4480

borisov

Все такие числа разобьем на две группы: в записи которых есть ноль и в записи которых нет нуля.

1. Найдем количество чисел, в записи которых нет нуля.

Найдем число выбрать 2 цифры, участвующие в записи числа, из 9 оставшихся:

C_9^2=\dfrac{9\cdot8}{2} =36C

9

2

=

2

9⋅8

=36

Найдем сколькими можно составить четырехзначное число, используя для этого две цифры:

2^4=162

4

=16

Заметим, что в одном из этих используется только первая цифра и еще в одном из используется только вторая. Так как по условию необходимо использовать ровно две различные цифры, то эти не нужно учитывать. Таким образом, число составить четырехзначное число с требуемым ограничением:

2^4-2=142

4

−2=14

Итак, выбрать цифры для записи числа можно и для каждого из них можно записать 14 чисел. Значит, всего чисел, в записи которых нет нуля, можно записать:

36\cdot14=\boxed{504}36⋅14=

504

2. Найдем количество чисел, в записи которых есть ноль.

Вторую цифру для записи числа из 9 оставшихся можно выбрать, очевидно

Найдем сколькими можно составить четырехзначное число, используя для этого две цифры, одна из которых 0. На первом месте не может находиться цифра 0, так как в противном случае число не будет четырехзначным. Значит, вариантов составления четырехзначного числа:

2^3=82

3

=8

Отметим, что среди этих есть один недопустимый - когда на последних трех местах повторяется цифра, отличная от нуля. На первом месте однозначно находится она же, значит всего в записи числа будет использоваться одна цифра, что не соответствует условию. Значит, число составить четырехзначное число, учитывая ограничение:

2^3-1=72

3

−1=7

Таким образом, выбрать цифры для записи числа можно и для каждого из них можно записать 7 чисел. Значит, всего чисел, в записи которых есть ноль, можно записать:

9\cdot7=\boxed{63}9⋅7=

63

3. Общее количество четырехзначных чисел, в записи которых используется ровно две различные цифры:

504+63=\boxed{567}504+63=

567

ответ: 567

websorokin

Все такие числа разобьем на две группы: в записи которых есть ноль и в записи которых нет нуля.

1. Найдем количество чисел, в записи которых нет нуля.

Найдем число выбрать 2 цифры, участвующие в записи числа, из 9 оставшихся:

C_9^2=\dfrac{9\cdot8}{2} =36C

9

2

=

2

9⋅8

=36

Найдем сколькими можно составить четырехзначное число, используя для этого две цифры:

2^4=162

4

=16

Заметим, что в одном из этих используется только первая цифра и еще в одном из используется только вторая. Так как по условию необходимо использовать ровно две различные цифры, то эти не нужно учитывать. Таким образом, число составить четырехзначное число с требуемым ограничением:

2^4-2=142

4

−2=14

Итак, выбрать цифры для записи числа можно и для каждого из них можно записать 14 чисел. Значит, всего чисел, в записи которых нет нуля, можно записать:

36\cdot14=\boxed{504}36⋅14=

504

2. Найдем количество чисел, в записи которых есть ноль.

Вторую цифру для записи числа из 9 оставшихся можно выбрать, очевидно

Найдем сколькими можно составить четырехзначное число, используя для этого две цифры, одна из которых 0. На первом месте не может находиться цифра 0, так как в противном случае число не будет четырехзначным. Значит, вариантов составления четырехзначного числа:

2^3=82

3

=8

Отметим, что среди этих есть один недопустимый - когда на последних трех местах повторяется цифра, отличная от нуля. На первом месте однозначно находится она же, значит всего в записи числа будет использоваться одна цифра, что не соответствует условию. Значит, число составить четырехзначное число, учитывая ограничение:

2^3-1=72

3

−1=7

Таким образом, выбрать цифры для записи числа можно и для каждого из них можно записать 7 чисел. Значит, всего чисел, в записи которых есть ноль, можно записать:

9\cdot7=\boxed{63}9⋅7=

63

3. Общее количество четырехзначных чисел, в записи которых используется ровно две различные цифры:

504+63=\boxed{567}504+63=

567

ответ: 567

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

45 ∙ 58 + 34 ∙ 45 + 8 ∙ 45 – 13400 ∶ (67 ∙ 78 – 68 ∙ 67)=?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Leon-12
Varvara
mar77873
annakuznetsova841
Elenazhukovafashion7
alvas12828646
IPMelnikovR146
Борисов
format-l3364
alyonafialka
lelikrom2202
Екатерина1369
slitex
srkushaev
angelina-uj1350