vsnimschikov391
?>

На доске написаны числа, среди которых есть различные. Напоминаем, что среднее арифметическое чисел Известно, что для каждого из написанных чисел на доске найдутся 2020 других написанных чисел, среднее арифметическое которых равно этому числу. Какое минимальное количество чисел могло быть написано на доске?

Математика

Ответы

ksuhova

1. х = 1   у = -2

2. х = 2   у = 1

Пошаговое объяснение:

1. 2х - у = 4

х - у = 3  → выразим значение у и подставим его в первое уравнение:

у = х - 3

2х - (х - 3) = 4

2х - х + 3 = 4

х = 4 - 3

х = 1 → подставим значение х во второе уравнение  х - у = 3:

1 - у = 3

у = 1 - 3

у = -2

Проверим:

2*1 - (-2) =  2 + 2 = 4

1 - (-2) = 1 + 2 = 3

2. 4х - 2у = 6

х + у = 3 → выразим значение у и подставим его в первое уравнение:

у = 3 - х

4х - 2(3 - х) = 6

4х - 6 + 2х = 6

6х = 6 + 6

6х = 12

х = 12/6

х = 2 → подставим значение х во второе уравнение  х + у = 3:

2 + у = 3

у = 3 - 2

у = 1

Проверим:

4*2 - 2*1 = 8 - 2 = 6

2 + 1 = 3

nv6634
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На доске написаны числа, среди которых есть различные. Напоминаем, что среднее арифметическое чисел Известно, что для каждого из написанных чисел на доске найдутся 2020 других написанных чисел, среднее арифметическое которых равно этому числу. Какое минимальное количество чисел могло быть написано на доске?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Владимир-Денисович1080
deshkina82
Romanovna-yana
zhmulyov-denis8
besson89
Bordo
Терентьева
unalone5593
Igor1406
marat7
egoryuzbashev
vinokurova88251
anechcak
Ligaevruslan
VASILEVNA