kav511
?>

, решить систему уравнений 12(х+у)^2+х=2, 5-у 6(х-у)^2+х=0, 125+у

Математика

Ответы

nsmmkrtchyan
ответ: 132, 198, 264, 396.Решение:

Чтобы из числа можно было сделать все шесть различных двухзначных чисел, необходимо, чтобы исходное число было трехзначным и все цифры в нем были разные, представим это число в виде 100a+10b+c.

А сумма всех шести различных двухзначных чисел будет такая:

(10a+b)+(10b+a)+(10a+c)+(10c+a)+(10b+c)+(10c+b)=\\= 22a+22b+22c.

При этом (k натуральное):

(22a+22b+22c)=k(100a+10b+c).

Представим теперь, что k\geq 3, то есть:

22a+22b+22c \geq 3(100a+10b+c)\\22a+22b+22c \geq 300a+30b+3c\\278a+8b\leq 19c.

Но это противоречие, так как правая часть по-любому больше левой, а здесь она меньше. Поэтому k.

Итак, нужно рассмотреть два случая:

1).  k=2. Тогда:

22a+22b+22c=2(100a+10b+c)\\11a+11b+11c=100a+10b+c\\89a=b+10c.

Нетрудно понять, что в натуральных однозначных числах здесь всего одно решение: a=1, b=9, c=8.

А нужное число - это 198.

2). Случай посложнее: k=1.

22a+22b+22c=1(100a+10b+c)\\78a-12b-21c=0\\26a=4b+3c

Если a=1 уравнение принимает вид 26=4b+3c, и, тогда в вышеуказанных условиях у него такое одно решение: a=1, b=3, c=2. Число - 132.

Ну а теперь пусть a=2 и 52=4b+7c. Здесь методом подбора: a=2, b=6, c=4. А число - 264.

И последний случай a=3, то есть 78=4b+7c, где, подбором, a=3, b=9, c=6. Число 396.

Делаем вывод, что Вася богатый и у него в доме четыре (по крайней мере!) квартиры.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

, решить систему уравнений 12(х+у)^2+х=2, 5-у 6(х-у)^2+х=0, 125+у
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

svetrusval
droshchupkin
Артем Уберт
juliat200520
krasilnikov74
peresvetoff100015
Shteinbakh
marani2
irkm8
Анатольевич447
Verdievruslan
Кедрин Карлен
anastasiya613
karinasy4ewa
zelreiki