klimenokvapeshop1408
?>

Поезд за 2/3 минуты проходит мимо семафора и за 3/2 минуты по мосту длиной 1000 м. найдите длину поезда

Математика

Ответы

Chitaia

пусть x-длина поезда,тогда1000+x - за 2/3 минут  x- за 3/2 минут(1000+x)/x=(2/3)/(3/2)x=(1000+x)*  (3/2)/(2/3)9/4x=1000+x  9x=4x+40009x-4x=(4x-4x)+40005x=4000x=800

angelinaugan119
Дано: s = 240 км t₁ = 3 ч t₂ = 5 ч найти: s₁-? ; s₂-? скорость пассажирского поезда:                             v₁ = s/t₁ = 240: 3 = 80 (км/ч) скорость товарного поезда:                             v₂ = s/t₂ = 240: 5 = 48 (км/ч) скорость сближения поездов:                             v = v₁ + v₂ = 80+48 = 128 (км/ч) время до встречи:                             t = s/v = 240: 128 = 1,875 (ч) расстояние, которое прошел до встречи пассажирский поезд:                           s₁ = v₁t = 80*1,875 = 150 (км) расстояние, которое прошел до встречи товарный поезд:                           s₂ = v₂t = 48*1,875 = 90 (км) ответ: 150 км; 90 км.    
alexderru

Рассмотрим дифференциальное уравнение вида , где  – производная «энного» порядка, а правая часть  зависит только от «икс». В простейшем случае  может быть константой.

Данное дифференциальное уравнение решается последовательным интегрированием правой части. Причём интегрировать придется ровно  раз.

На практике наиболее популярной разновидность является уравнение второго порядка: . Дважды интегрируем правую часть и получаем общее решение. Уравнение третьего порядка  необходимо проинтегрировать трижды, и т.д. Но диффуров четвертого и более высоких порядков в практических заданиях что-то даже и не припомню.

Пример 1

Найти общее решение дифференциального уравнения

Решение: Данное дифференциальное уравнение имеет вид .

Понижаем степень уравнения до первого порядка:

Или короче: , где  – константа

Теперь интегрируем правую часть еще раз, получая общее решение:

ответ: общее решение:  

Проверить общее решение такого уравнения обычно очень легко. В данном случае необходимо лишь найти вторую производную:

Получено исходное дифференциальное уравнение , значит, общее решение найдено правильно.

Пример 2

Решить дифференциальное уравнение

Это пример для самостоятельного решения. Как я уже где-то упоминал, иногда диффур может быть подшифрован. В предложенном примере сначала необходимо привести уравнение к стандартному виду . Решение и ответ в конце урока.

Нахождение частного решения (задача Коши) имеет свои особенности, которые мы рассмотрим в следующих двух примерах:

Пошаговое объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Поезд за 2/3 минуты проходит мимо семафора и за 3/2 минуты по мосту длиной 1000 м. найдите длину поезда
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mariia39
volkovaekaterina303
arammejlumyan
shuxratmaxmedov
barnkim
Zimin1111
Svetlana395
spec-nt
Мечиславович_Кварацхелия1988
Платон Демцун
ogonizoloto
Sergei1805
NatalyaAlekseevich1644
SEMENOV25352
iqtoy2010