ответ: ОДЗ: х не равно -3; х не равно о.
переносим 3 в левую часть.
дополнительный множитель к первой дроби х, ко второй х+з, к третей х(х+3)
раскрывает скобки и у нас получается в числителе 5х+4х+12-3х^2-9х в знаменателе х(х+3)
уничтожаем подобные члены и у нас остается +12-3х^2/х(х+3)>=0
умножаем на -1 и у нас получается (когда мы умножаем на -1 знак тоже меняется)
3х^2+12/х(х+3)<=0
теперь выносим 3 и у нас получается 3(х^2-4)/х(х+3)<=0
теперь раскладываем на множители в скобке
3(х-2)(х+2)/х(х+3)<=0
воспользуемся методом интервалов,а для этого найдем нули функции
f(x)=f(0)=f(-2)=f(2)=f(-3)
теперь нули вынесем на координатную прямую
___-3-202>
ответ х=(-3;-2]u(0;2]
Среднее арифметическое чисел - это частное от деления суммы чисел на число слагаемых.
Размах ряда чисел – это разница между наибольшим числом и наименьшими элементами множества.
Мода - наиболее часто встречающиеся или повторяющиеся элемент множества. Если множество не содержит повторяющихся элементов, то мода равна 0.
Если множество содержит нечетное количество чисел, то медиана — это число, которое является серединой множества чисел. Если множество содержит четное количество чисел, то медиана - это среднее арифметическое для двух чисел, находящихся в середине множества.
а) 58, 60, 49, 35, 51, 42, 65, 40.
Среднее арифметическое:
(58+60+49+35+51+42+65+40)/8=400/8=50
Сортируем по возрастанию: 35, 40, 41, 42, 49, 51, 58, 60.
Размах:
60-35=25
Мода: 0, так как нет повторяющихся чисел.
Количество чисел чётное, то медиана
(42+49)/2=91/2=45,5
б) 21, 25, 19, 13, 25, 29, 21, 27, 30.
Среднее арифметическое:
(21+25+19+13+25+29+21+27+30)/9=210/9=70/3=23 1/3
Сортируем по возрастанию: 13, 19, 21, 21, 25, 25, 27, 29, 30
Размах:
30-13=17
Мода: получается 2 моды 21 и 25.
Количество чисел нечётное, то медиана
*25*
Поделитесь своими знаниями, ответьте на вопрос:
Уани две одинаковые пары перчаток. она наугад берет две перчатки. какова вероятность того , что они окажутся парными(на разные руки)?
после того, как аня возьмет одну перчатку, у нее останутся 3: 2 на другую руку и одна на ту же руку, поэтому искомая вероятность 2/3