1 вариант - ∠CBO = 35°
2 вариант - ∠ABO = 30°
Пошаговое объяснение:
Теорема о вписанном угле: Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, либо дополняет до 180° половину центрального угла, опирающегося на дополнительную дугу.
Следовательно:
1 вариант:
∠COD - центральный и равен 70°, ∠CBD - вписанный угол и равен половине угла COD, т.к. опирается на одну дугу CD:
CBD = COD ÷ 2 = 70 : 2 = 35°
∠CBD = ∠CBO = 35°
2 вариант решается так же:
∠AOD - центральный и равен 60°, ∠ABD - вписанный угол и равен половине угла AOD, т.к. опирается на одну дугу AD:
ABD = AOD : 2 = 60° : 2 = 30°
∠CBD = ∠CBO = 35°
∠ABD = ∠ABO = 30°
Следовательно, можно сделать вывод, что вписанный угол равен половине центрального угла, опирающегося на одну дугу, и равен половине дуги, на которую опирается этот угол (т.к. центральный угол равен градусной мере дуги)
если я тебе то отметь мой ответ как лучший :)
Поделитесь своими знаниями, ответьте на вопрос:
Вычисли и проверь. 900 487 - 45 789 647 802 + 145 009 902 156 – 87 099 378 992 + 524 100 563 409 158 - 56 743 000 1 000 000 000 – 454 360 007
б) Уравнение сторон АВ и ВС и их угловые коэффициенты: АВ : Х-Ха = У-Уа
Хв-Ха Ув-Уа
Получаем уравнение в общем виде:
АВ: 4х - 8 = 3у - 6 или
АВ: 4х - 3у - 2 = 0
Это же уравнение в виде у = кх + в:
у = (4/3)х - (2/3).
Угловой коэффициент к = 4/3.
ВС : Х-Хв = У-Ув
Хс-Хв Ус-Ув
ВС: 2х + у - 16 = 0.
ВС: у = -2х + 16.
Угловой коэффициент к = -2.
в) Внутренний угол В:Можно определить по теореме косинусов.
Находим длину стороны ВС аналогично стороне АВ:
BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.236067977
cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) = 0.447214
Угол B = 1.107149 радиан = 63.43495 градусов.
Можно определить векторным
Пусть координаты точек
A: (Xa, Ya) = (2; 2) .
B: (Xb, Yb) = (5; 6).
С: (Xc, Yc) = (6; 4).
Находим координаты векторов AB и BС:
AB= (Xb-Xa; Yb-Ya) = ((5 - 2); (6 - 2)) = (3; 4);
BС= (Xc-Xв; Yс-Yв) = ((6 - 5); (4 - 6)) = (1; -2).
Находим длины векторов:
|AB|=√((Xb-Xa)² + (Yb-Ya)^2) = 5 ( по пункту а)
|ВС|=√((Xс-Xв)²+(Yс - Yв) = √(1²+(-2)²) = √5 = 2.236067977.
b=cos α=(AB*ВС)/(|AB|*|ВС|
AB*ВC = (Xв - Xa)*(Xc - Xв) + (Yв - Ya)*(Yc - Yв) =
= 3*1 + 4*(-2) = 3 - 8 = -5.
b = cosα = |-5| / (5*2.236067977) = 5 / 11.18034 = 0.447213620
Угол α=arccos(b) = arc cos 0.4472136 = 1.1071487 радиан = 63.434949°.
г) Уравнение медианы АЕ.
Находим координаты точки Е (это основание медианы АЕ), которые равны полусумме координат точек стороны ВС.
3x - 6 = 3,5y - 7
3x - 3,5y + 1 =0, переведя в целые коэффициенты:
6х - 7у + 2 = 0,
С коэффициентом:
у = (6/7)х + (2/7) или
у = 0.85714 х + 0.28571.