1) 6x^2 - 12 = 0
6(x^2 - 2) = 0
x^2 = 2
x = ±√2
2) 3a^2 + 5a + 2 = 0
d = b^2 - 4ac = 25 - 4 * 3 * 2 = 25 - 24 = 1, √d = 1.
a1 = (-5 + 1) / 6 = -4/6 = -2/3
a2 = (-5 - 1) / 6 = -1
3) 4x + 4x^2 + 1 = 0
4x^2 + 4x + 1 = 0
d = k^2 - ac (вторая формула для нахождения дискр.) = 2^2 - 4*1 = 0
x1 = -2 + 0 / 4 = -0,5
4) 3x^2 + 7x - 6 = 0
d = b^2 - 4ac = 49 - 4 * 3 * (-6) = 49 +72 = 121, √d = 11
x1 = -7 + 11 / 6 = 4/6 = 2/3
x2 = -7 - 11 / 6 = -3
5) 5x^2 - 22x - 15 = 0
d = k^2 - ac = 11^2 - 5 * (-15) = 121 + 75 = 196, √d = 14
x1 = 11 + 14 / 5 = 25 / 5 = 5
x2 = 11 - 14 / 5 = -3/5 = - 0,6
6) 3x^2 - 10x + 9 = 0
d = k^2 - ac = 25 - 3 * 9 = 25 - 27 = -2, √d < 0, корней нет.
Чтобы найти синус и косинус угла в прямоугольном треугольнике, нужно вспомнить определения. Синус угла равен отношению противоположного катета к гипотенузе. Косинус угла равен отношению прилежащего катета к гипотенузе.
Прямоугольный треугольник
Если у нас есть треугольник ABC, рисунок выше, для которого С- прямой угол, то сторонами BC и AC будут катеты, а сторона AB - гипотенуза. Следовательно, по определению, синус угла ABC равен отношению катета АС к гипотенузе: синус угла ABC=ACAB и синус угла BAC=BCAB.
косинус угла ABC=BCAB и косинус угла BAC=ACAB.
Чаще всего известно лишь часть данных, например катет и угол, нужно выразить неизвестную величину. Подумайте, как это сделать.
Пример 1. Вычислим синус по двум катетам.
Берем тот же треугольник ACB с прямым углом С в котором мы знаем катеты: BC=3, AC=4. Для вычисления синуса угла с необходимо разделить катет на гипотенузу: sin∠BAC=BCAB.
Гипотенузу вычислим из теоремы Пифагора: AC2+BC2=AB2 9+16=25 AB=5 откуда синус равен:
sin∠BAC=35
Поделитесь своими знаниями, ответьте на вопрос: