Рассмотрим на примерах несколько способов решения систем.способ подстановки.решим систему уравнений: способ подстановки заключается в следующем: 1) выражаем одно неизвестное через другое, воспользовавшись одним из заданных уравнений. обычно выбирают то уравнение, где это делается проще. в данном случае нам все равно, какое из заданных уравнений использовать для нашей цели. возьмем, например, первое уравнение системы, и выразим x через y: . 2) подставим во второе уравнение системы вместо x полученное равенство: . получили линейное уравнение относительно переменной y. решим это уравнение, помножим это равенство на 2, чтобы избавиться от дроби в левой части равенства: подставим найденное значение в равенство, выражающее x, получим: . таким образом, нами найдена пара значений , которая является решением заданной системы. осталось сделать проверку. проверка: способ уравнивания коэффициентов при неизвестных состоит в том, что исходную систему приводят к такой эквивалентной системе, где коэффициенты при x или y были одинаковы. покажем, как это делается, на данном примере. решим систему: 1) для приравнивания коэффициентов, например при y надо найти нок(3; 5)=15, где 3 и 5 —коэффициенты при y в уравнениях системы. затем разделить 15 на 3 — коэффициент при y в первом уравнении, получим 5. делим 15 на 5 — коэффициент при — во втором уравнении, получаем 3. следовательно, первое уравнение системы умножаем на 5. а второе на 3: 2) так как коэффициенты при y имеют противоположные знаки, складываем почленно уравнения системы: 3) для нахождения соответствующего значения y подставим значение x в любое исходное уравнение системы (обычно подставляют в то уравнение системы, где отыскание значения y проще). в исходной системе уравнения одинаковы по сложности, поэтому подставим значение x = 4 во второе уравнение, чтобы не делать лишней операции деления на -1: таким образом, найдена пара значений которая является решением заданной системы.иногда системы уравнений, где нет необходимости в уравнивании коэффициентов при неизвестных. почленное сложение или вычитание уравнений системы приводит к простейшему решению. например, решить систему уравнений: складывая почленно уравнения заданной системы, получим: . подставив вместо x значение 5 во второе уравнение исходной системы, находим соответствующее значение y:
Zuriko1421
30.06.2020
1-2cosx-sin^2 x=0 1-2cosx-(1-cos^2 x)=0 cos^2x-2cosx=0 cosx (cosx-2)=0 cosx=0 ili cosx=2 x=π/2 +πn решений не имеет! это ответ 2)cos^2 x-2cosx-3=0 y=cosx; y^2-2y-3=0; y1=3; y2=-1 cosx=3 ili cosx=-1 нет решений x=π+2πn 3) sinx-cosx=0 /cosx tgx-1=0; x=π/4+πn