ZharikovZalina
?>

Решите показательные уравнения 0, 5^x=0, 125 (1/9)^x=1 (1/6)^x=36

Алгебра

Ответы

DodokhodzhaevVladimirovich
Что то не понятно будет,пиши)
baxirchik

Из исходного равенства видно, что p>q,  в противном случае равенство не выполнялось бы. Предположим, что  p=q+k, где k - натуральное. Тогда 2q+k=(q+k-q)^3, отсюда 2q+k=k^3 или 2q=k^3-k=k(k^2-1). Тогда  q=k(k^2-1)/2. Отсюда сразу видно, что q будет простым только при k=2, поскольку при k=1 получаем 0, а при k>2 будем получать составные числа, а по условию q простое. Итак, при k=2, q=2*(2^2-1)/2=3. Тогда p=q+k=3+2=5. Это единственное решение удовлетворяющее данному равенству.

ответ: p=5, q=3.

Марина_Мария

ответ: Нет.

Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.

Пусть искомый многочлен f(x) существует.

Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).

Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.

Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).

То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите показательные уравнения 0, 5^x=0, 125 (1/9)^x=1 (1/6)^x=36
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Shirochkingames
alexseyzyablov
firsova5911
Половников1964
cafemgimo
kogakinoa
seregina19706867
shoko-2379
innesagrosheva22
namik120939
natakrechko
Stryapunina
sahar81305
triumfmodern
hamelleon43