7x²-x-8=0
Сначала решим уравнение через дискриминант.
D=b²-4ac
В данном уравнении: a=7; b=-1; c=-8. Подставляем.
D=(-1)²-4*7*(-8)=1+224=225=15²
Найдём корни по формуле
x=(-b±√D):2a=(-(-1)±15):2*7=(1±15):14
Получаем
x₁=(1-15):14=-14:14=-1
x₂=(1+15):14=16/14=8/7=1 1/7
Есть такая формула для разложения квадратного трёхчлена на множители: ax²+bx+c=a(x-x₁)(x-x₂)
Нам известны корни, подставим их, а также значение A.
7(x+1)(x-1 1/7)
Внесём 7 во вторую скобку, чтобы избавиться от дроби.
7(x+1)(x-8/7)=(x+1)(7x-8)
ответ: 7x²-x-8=(x+1)(7x-8)
Задать во
Дано: S1 = 44 см2, S2 = 50 см2, a2 = a1 - 1, b2 = b1 + 2. Найти: a1 = ?, b1 = ?.
Решение
Площадь треугольника до изменения сторон равна:
S1 = (1/2) * a1 * b1.
Площадь треугольника после изменения сторон:
S2 = (1/2) * a2 * b2 = (1/2) * (a1 - 1) * (b1 + 2).
Выразим один из катетов из первого равенства:
a1 = 2 * S1 / b1
и подставим во второе уравнение:
S2 = (1/2) * ((2S1 / b1) - 1) * (b1 + 2).
Используя значения площадей из условия, получим квадратное уравнение и решим его через дискриминант:
50 = (1/2) * ((2 * 44 / b1) – 1) * (b1 + 2);
100 = 88 – b1 + 176/b1 – 2;
14 + b1 – 176/b1 = 0;
b12 + 14b1 – 176 = 0;
D = 196 + 704 = 900;
√D = 30.
В результате получим два значения стороны b1:
b1 = (-14 + 30)/2 = 8;
или
b1 = (-14 – 30)/2 = -22.
Так как длина не может быть отрицательной, то второе решение отбрасываем, тогда b1 = 8. С учётом найденного значения ищем катет a1:
44 = (1/2)a1 * 8;
a1 = 11.
ответ: a1 = 11, b1 =8
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение выражения: -1, 6x + 0, 2y+2, 6x-0, 1-3, 2y при x=1/2, у=-2/3