Ну, решать здесь нечего, так как это ни задача, ни неравенство, ни даже уравнение. Здесь можно только упростить, разложить на множители.
Видим, что у первый двух слагаемых есть общий множитель 2. А у вторых двух -t. Объединим одночлены в группы и вынесем общее. Если что, вынести общий множитель - значит разделить каждое слагаемое на него. Например, у 2t и 2q общий множитель 2. Чтобы вынести его за скобку, мы должны 2t поделить на 2 и 2q поделить на 2. То есть: 2t+2q=2(t-q). Можем себя проверить, умножив двойку на эту скобку. Получим тоже самое: 2*t+2*q. Таким образом:
У t и q общее было - t. Мы разделили - t² и - tq на - t, получили t и q.
Теперь можем увидеть, что t+q - это общий множитель у получившихся слагаемых. Можем его тоже вынести, поделив 2(t+q) на t+q и - t(t+q) тоже делим на t+q. Получаем:
Это максимально упрощённое выражение.
Такое упрощение называют разложением многочлена на множители.
(4,5; -7)
Объяснение:
(3x-2)^2-(x-16)^2=0
Воспользуемся формулой сокращенного умножения (a - b)^2 = a^2 - 2ab + b^2 для (3x-2)^2 и (x-16)^2.
1) (3x-2)^2 = 9x^2 - 2*6x + 4;
2) (x-16)^2 = x^2 - 2*16x + 256;
Соответственно, получается вот такое страшное выражение:
3x^2 - 12x + 4 - (x^2 - 32x + 256) = 0
Выражение в скобках необходимо раскрыть, изменив знаки внутри, поскольку впереди стоит "-"
9x^2 - 12x + 4 - x^2 + 32x - 256 = 0
Находим подобные слагаемые, скобки для удобства:
(9x^2 - 1x^2) + (32x-12x) - (256-4) = 0
Вычисляем, получается обычное квадратное уравнение:
8x^2 + 20x - 252 = 0
Находим дискриминант:
D=b^2-4*a*c
D=400 - 4*8*(-252)= 8464
Поделитесь своими знаниями, ответьте на вопрос:
Найдите промежутки убывания функции ответы: 1)[-4; -3] 2)[-3; 4] .; 3] [4; бесконеч) .-4] [-3; бесконеч) 5)[3; 4] найдите промежутки убыв.функции y=2x^3+3x^2-12x+7 правильным ответом будет [-2; 1] или все-таки [-1; 2]