Мария591
?>

1)куб суммы 3m и 2n "2)куб разности 5х и 3у 3)куб суммы 4а и 7b 4)куб разности 6х и 11z

Алгебра

Ответы

rsksnb
(3m + 2n)³ = (3m)³+3*(3m)²*2n+3*(3m)*(2n)²+(2n)³=27m³+54m²n+36mn²+8n³ (5х - 3у)³ =  (5x)³-3*(5x)²*3y+3*(5x)*(3y)²-(3y)³ = 125x³- 225x²y+135xy²-27y³ (4a+7b)³ =  (4a)³+3*(4a)²*7b+3*(4a)*(7b)²+(7b)³ = 64a³+336a²b+948ab²+343b³ (6х - 11z)³ =  (6x)³-3*(6x)²*11z+3*(6x)*(11z)²-(11z)³ = 216x³- 1188x²z+2178xz²-1331z³
balabina-Olesya

Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .

Если нарисовать числовую окружность, то значение  есть координата точки по оси , ведь для любой точки числовой окружности справедливо, что , т.е. точка имеет координаты .  

Если провести прямую, параллельную оси через точку , то она пересечётся с числовой окружностью в каких-то точках.  

Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке и отмечать всё, о чём я пишу.  

Теперь рассмотрим эти точки пересечения.

Если , то пересечения будут в первой и второй четвертях.

Если , то пересечения будут в третьей и четвёртой четвертях.

Если , то пересечений тоже два и это  и .

Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она .

Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно .

А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол , что . Главное здесь то, что может быть углом только первой четверти.  

Отсюда же следует, что .

Это прекрасно работает для , ведь .

Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ это число, а - угол.  

Пусть прямая пересекается с окружностью в точках в первой четверти и во второй четверти, а точку на оси мы обзовём . Рассмотрим треугольники и , в них:

- отрезок, лежащий на оси , а - хорда, параллельная оси , значит , по аксиоме о перпендикулярности прямых. Следовательно, треугольники и - прямоугольные по определению. - отрезок, лежащий на радиусе и , значит по свойству радиуса. - общая сторона.

Треугольники  и  равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол  и угол .

Но углы мы отсчитываем от точки , обзовём её . Тогда угол . А это угол первой четверти.  

А угол  - искомый угол второй четверти.

Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный . Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами надо добавить , где - целое (чтобы получились полные обороты).

Вот так и получается первая формула.

Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если  - чётное, то формула трансформируется в , если нечётное, то в , ну а . Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.

Как-то так. Фу-у-у-ух. Много. Очень Много Букв за задержку.

balabina-Olesya

№1

1) х ∈ [-4; 1]

2) х ∈ (-∞; 0] ∪ [2; +∞)

3) х ∈ (-∞;+∞)

4) х ∈ [5; +∞)

5) х ∈ (-∞; -2] ∪ [3; +∞)

№2

1) х ∈ (-4.6; 1.3) ∪ (1.3; +∞)

2) х ∈ [-2.25; 1]

№3

1) х ∈ [0; 4]

2) х ∈ (-5; \frac{1}{3})

Объяснение:

№1 Спочатку вирішується як звичайне рівняння, потім знаходимо проміжок який нам потрібен і записуємо у відповідь.

1) x² + 3x - 4 < 0

(Всі рівняння я буду вирішувати за до дискримінанту)

D = b² - 4ac = 9 - 4 × 1 × (-4) = 9 + 16 = 25

x₁ = \frac{-b - \sqrt{D} }{2a} = \frac{-3 - \sqrt{25} }{2} = \frac{-3 - 5}{2} = \frac{-8}{2} = -4

x₂ = \frac{-b + \sqrt{D} }{2a} = \frac{-3 + 5}{2} = \frac{2}{2} = 1

(У перший раз я розписав дискримінант повністю, надалі я так робити не буду)

Беремо будь-яке число у проміжку від -4 до 1 (наприклад 0) і підставляємо його у рівняння:

0² + 3 × 0 - 4 < 0

-4 < 0

Нерівність виконується для проміжку від -4 до 1. Отже х ∈ [-4; 1].

2) 4х² - 8х ≥ 0

Поділимо усе на 4 для спрощення:

х² - 2х ≥ 0

D = 4 - 4 * 1 * 0 = 4

x₁ = \frac{2 - 2}{2} = 0

x₂ = \frac{2+2}{2} = 2

Беремо будь-яке число у проміжку від 0 до 2 (наприклад 1) і підставляємо його у рівняння:

1 - 2 ≥ 0

-1 ≥ 0

Нерівність не виконується, отже проміжок від 0 до 2 не підходить, отже:

х ∈ (-∞; 0] ∪ [2; +∞)

3) x² - 6x + 10 > 0

D = 36 - 4 * 1 * 10 = 36 - 40 = -4

Так як дискримінант менше нуля, то рівняння не має дійсних коренів. Візьмемо будь-яке число з проміжку (-∞;+∞), наприклад 0:

10 > 0

Нерівність виконується. Отже: х ∈ (-∞;+∞)

4) х² - 10х + 25 ≤ 0

D = 100 - 4 * 1 * 25 = 100 - 100 = 0

Оскільки дискримінант = 0, то рівняння має лише один корень:

х = \frac{10}{2} = 5

Візьмемо будь яке число з проміжку (-∞; 5), наприклад 0:

25 ≤ 0

Нерівність не виконується, отже проміжок (-∞; 5) не підходить, отже:

х ∈ [5; +∞)

5) (х + 2) * (х - 3) > 0

Щоб вираз дорівнював 0, достатньо щоб хоча б один з множників дорівнював 0:

х + 2 = 0          або          х - 3 = 0

х = - 2              або          х = 3

Візьмемо будь-яке число від -2 до 3 (наприклад 0):

(0 + 2) * (0 - 3) > 0

2 * (-3) > 0

-6 > 0

Нерівність не виконується, отже:

х ∈ (-∞; -2] ∪ [3; +∞)

№2

1) Щоб ділення дорівнювало 0, потрібно щоб чисельник дорівнював 0. Але для початку треба знайти область допустимих значень (знаменник не може дорівнювати 0 тому що на 0 ділити не можна):

ОБС:

х - 1.3 ≠ 0

х ≠ 1.3

Тепер можна вирішувати рівняння:

х + 4.6 > 0

х > -4.6

Отже: х ∈ (-4.6; 1.3) ∪ (1.3; +∞)

2) Найлегше відкрити скобки і перенести 9 у ліву частину при цьому змінити знак на протилежний:

4х² + 7х - 11 ≥ 0

D = 49 - 4 * 4 * (-11) = 49 + 176 = 225

x₁ = \frac{-7 - 15}{8} = -2.25

x₂ =\frac{-7+15}{8} = 1

Будь-яке число від -2.25 до 1 (наприклад 0):

-11 ≥ 0

Нерівність виконується, отже проміжок нам підходить:

х ∈ [-2.25; 1]

№3 Область визначення це ті числа яких може набувати "х"

1) Число під коренем не може буди від'ємним, отже:

ОДС: 4х - х² ≥ 0

х × (4 - х) ≥ 0

х ≥ 0    або     4 ≥ х

х має бути більше (або дорівнювати) за 0, але менше (або дорівнювати) за 4.

Отже: х ∈ [0; 4]

2) Рівняння під коренем яке ще й при цьому знаходиться у знаменнику має бути строго більше за 0.

ОДС: 5 - 14х - 3х² > 0

Помножимо усе на -1 (не забувши при цьому змінити знак нерівності на протилежний):

3х² + 14х - 5 < 0

D = 196 - 4 * 3 * (-5) = 196 + 60 = 256

x₁ = \frac{-14 - 16}{6} = -5

x₂ = \frac{-14 + 16}{6} = \frac{2}{6} = \frac{1}{3}

Візьмемо будь-яке число з цього проміжку (0):

- 5 < 0

Нерівність виконується, отже:

х ∈ (-5; \frac{1}{3})

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1)куб суммы 3m и 2n "2)куб разности 5х и 3у 3)куб суммы 4а и 7b 4)куб разности 6х и 11z
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Тамара_Григорьевна897
Выражение c - 5 k/4 c - k + c - 3 k/4 c - k
Serezhkin
maksim1lssah575
arionul-secondary2
seletan1
anna-leonova
lika080489
ddavydov1116
kristina
Станислав Валерий1696
nngudkova1970
infooem
petrowanastya202081
happygal5224
cochana