мария Кузив1393
?>

Запишите окрестность точки а радиусом р в виде интервала если а)а=0, r=0, 32 ответ? ?

Алгебра

Ответы

teya07
A+r=0+3,2=3,2 a-r=0-3,2=-3,2 [-3,2; 3,2]- окрестность точки а
almazsit85

хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз

Hugokate77729

Объяснение:

Найти площадь фигуры, ограниченной линиями:

у=х² +6х+12; х=-1; х=-3; у = 0​

Построим указанные кривые на координатной плоскости

у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).

Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы

у(-3) = 9 - 18 + 12 = 3

у(-1) = 1 - 6 + 12 = 7

Координаты двух других точек (-3;3) и (-1;7)

Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.

Данные прямые параллельны оси абсцисс  и проходят через точки (-1;0) и (-3;0) соответственно.

Прямая y=0 является осью ординат.

Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12

Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и  функцией х² +6х+12

S = \int\limits^{-1}_{-3} {(x^2+6x+12)} \, dx=\frac{x^3}{3}+3x^2+12x\left[\begin{array}{ccc}-1&\\-3\end{array}\right] = \frac{-1}{3}+3-12-(-\frac{27}{3}+27-36)= -\frac{1}{3}-9 +18 = 9-\frac{1}{3} = 8,67


Найти площадь фигуры, ограниченной линиями:у=х^2 +6х+12; х=-1; х=-3; у = 0​

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Запишите окрестность точки а радиусом р в виде интервала если а)а=0, r=0, 32 ответ? ?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vladburakoff5
yana799707
a8227775
tarhan1221
nekataniyoleg
Kati2005
adman7
Bobkov
drontox1031
Ferrigen
oyudina
Валентина980
juliat200520
stusha78938
igorSvetlana547