Simplifying
4x3 + -81x = 0
Reorder the terms:
-81x + 4x3 = 0
Solving
-81x + 4x3 = 0
Solving for variable 'x'.
Factor out the Greatest Common Factor (GCF), 'x'.
x(-81 + 4x2) = 0
Factor a difference between two squares.
x((9 + 2x)(-9 + 2x)) = 0
Subproblem 1
Set the factor 'x' equal to zero and attempt to solve:
Simplifying
x = 0
Solving
x = 0
Move all terms containing x to the left, all other terms to the right.
Simplifying
x = 0
Subproblem 2
Set the factor '(9 + 2x)' equal to zero and attempt to solve:
Simplifying
9 + 2x = 0
Solving
9 + 2x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-9' to each side of the equation.
9 + -9 + 2x = 0 + -9
Combine like terms: 9 + -9 = 0
0 + 2x = 0 + -9
2x = 0 + -9
Combine like terms: 0 + -9 = -9
2x = -9
Divide each side by '2'.
x = -4.5
Simplifying
x = -4.5
Subproblem 3
Set the factor '(-9 + 2x)' equal to zero and attempt to solve:
Simplifying
-9 + 2x = 0
Solving
-9 + 2x = 0
Move all terms containing x to the left, all other terms to the right.
Add '9' to each side of the equation.
-9 + 9 + 2x = 0 + 9
Combine like terms: -9 + 9 = 0
0 + 2x = 0 + 9
2x = 0 + 9
Combine like terms: 0 + 9 = 9
2x = 9
Divide each side by '2'.
x = 4.5
Simplifying
x = 4.5
Solution
x = {0, -4.5, 4.5}
x + 1 / y = y + 1 / z преобразуем в: x - y = 1 / z - 1 / y = (y - z) / (y * z) y + 1 / z = z + 1 / x преобразуем в: y - z = 1 / x - 1 / z = (z - x) / (x * z) z + 1 / x = x + 1 / y преобразуем в: z - x = 1 / y - 1 / x = (x - y) / (x * y) умножим полученные 3 равенства: (x - y) * (y - z) * (z - x) = (y - z) / (y * z) * (z - x) / (x * z) * (x - y) / (x * y) (x - y) * (y - z) * (z - x) = (x - y) * (y - z) * (z - x) / (x * y * z)^2 отсюда следует, что или (x * y * z)^2 = 1, или скажем x = y, но тогда и y = z (следует из: x + 1 / y = y + 1 / z).
Поделитесь своими знаниями, ответьте на вопрос:
Найти целочисленные решения уравнения y^2+xy-y+2x-8=0