ответ: Ymax=24, Ymin=-3.
Объяснение:
Находим производную y'=3*x²+6*x-9=3*(x²+2*x-3)=3*(x-1)*(x+3). Приравнивая её к нулю, находим критические точки x1=1 и x2=-3. Если x<-3, то y'>0, поэтому на интервале (-∞;-3) функция возрастает. Если -3<x<1, то y'<0, поэтому на интервале (-3;1) функция убывает. Наконец, если x>1, то y'>0, поэтому на интервале (1;∞) функция возрастает. Отсюда следует, что точка x=-3 является максимума, а точка x=1 - точкой минимума. Наибольшее значение функции Ymax=y(-3)=29, а наименьшее Ymin=y(1)=-3. Однако так как точка x=-3 не принадлежит интервалу [-2;2], то её не рассматриваем. Сравниваем значения на концах интервала: y(-2)=24, y(2)=4. Поэтому Ymax=y(-2)=24, Ymin=y(1)=-3.
№4
найдем нули функции
0=х²-4х+3
D=(-4)²-4×3×1=4
x=(4±√4)÷2= 3 или 1
a=1>0⇒ ветви параболы вверх ⇒ y>0 x∈(-∞;1)∪(3;∞)
y<0 (1;3)
№6
я тебе график не построю но с аргументом помогу
также находим нули функции
0=х²-4
0=(х-2)(х+2) ⇒х=±2
а=1>0 ⇒ ветви параболы вверх ⇒y>0 (-∞;-2)∪(2;∞)
№5
y=-x²+6x-5
найдем ось симметрии m=-b/2a=-6÷(2×(-1))=3
a=-1<0 ⇒ ветви вниз ⇒ функция возрастает (-∞;3)
функция убывает(3;∞)
№7
g(x)=-4x²+16x-3
a=-4<0 ⇒ ветви вниз ⇒ самое наибольшее значение y будет получаться при самом наименьшем значении х ⇒ряд по убыванию таков: f(2) , f(5) ,f(8.1) , f(11.8)
Поделитесь своими знаниями, ответьте на вопрос:
Решитъ 4х+2=2х-8 напишите правелъное решение
4х+2=2х-8
4х-2х=-8-2
2х=-10
х=-5