1) y=3x^2-12x
0=3x^2-12x
3x^2-12x= 0
3x*(x-4)=0
x*(x-4) = 0
x=0
x-4=0
x=0
x=4
x1=0; x2=4
По графіку 1:
Корені (0;0) (4;0)
Область визначення x € R
Мінімум (2;-12)
Перетин з віссю ординат (0;0)
2) y=-2x³+5,2x
0=-2x³+5,2x
-2x³+5,2x= 0
-2x³+26/5x=0
-x*(2x²-26/5)=0
x*(2x²-26/5)=0
x=0
2x²-26/5=0
x=0
x=-√65/5
x=√65/5
x1=-√65/5; x2=0; x3=√65/5
x1≈-1,61245; x2=0; x3≈1,61245
По графіку 2:
Корені (-√65/5;0) (0;0)
(√65/5;0)
Область визначення x € R
Мінімум (-√195/15; -52√195/225
Максимум (√195/15; 52√195/225)
Перетин з віссю ординат (0;0)
3)y=-x²+6x-9
0=-x²+6x-9
0+x²-6x+9=0
(x-3)²=0
x-3=0
x=3
По графіку 3:
Корені (3;0)
Область визначення x € R
Максимум (3;0)
Перетин з віссю ординат (0;-9)
4)y=-x²-2,8x
0=-x²-2,8x
-x²-2,8x=0
-x²-14/5x=0
-x*(x+14/5)=0
x*(x+14/5)=0
x=0
x+14/5=0
x=0
x=-14/5
x1=-14/5 x2=0
x1=-2,8 x2=0
По графіку 4:
Корені (-14/5;0) (0;0)
Область визначення x € R
Максимум (-7/5; 49/25)
Перетин з віссю ординат (0;0)
Решение методом Крамера.
Воспользуемся формулой для вычисления определителя матрицы 3×3:
∆ = В
1 2 -3 1
2 -3 -1 -7
4 1 -2 0
= 1·(-3)·(-2) + 2·(-1)·4 + (-3)·2·1 - (-3)·(-3)·4 - 1·(-1)·1 - 2·2·(-2) =
= 6 - 8 - 6 - 36 + 1 + 8 = -35.
Заменяем 1-й столбец на вектор результатов B:
∆1 =
1 2 -3
-7 -3 -1
0 1 -2 =
= 1·(-3)·(-2) + 2·(-1)·0 + (-3)·(-7)·1 - (-3)·(-3)·0 - 1·(-1)·1 - 2·
·(-7)·(-2) = 6 + 0 + 21 - 0 + 1 - 28 = 0.
Заменяем 2-й столбец на вектор результатов B:
∆2 =
1 1 -3
2 -7 -1
4 0 -2 =
= 1·(-7)·(-2) + 1·(-1)·4 + (-3)·2·0 - (-3)·(-7)·4 - 1·(-1)·0 - 1·2·
·(-2) = 14 - 4 + 0 - 84 - 0 + 4 = -70.
Заменяем 3-й столбец на вектор результатов B:
∆3 =
1 2 1
2 -3 -7
4 1 0 =
= 1·(-3)·0 + 2·(-7)·4 + 1·2·1 - 1·(-3)·4 - 1·(-7)·1 - 2·2·0 =
= 0 - 56 + 2 + 12 + 7 - 0 = -35.
x = ∆1 / ∆ = 0 /-35 = 0.
y = ∆2 / ∆ = -70 / -35 = 2.
z = ∆3 / ∆ = -35 / -35 = 1.
Поделитесь своими знаниями, ответьте на вопрос:
Логическая : в концерте принимали участие из вокального кружка. известно, что маша выступала 3 раза, саша-5 раз, дима-4 раза, а толя-2 раза. три ребенка не принимали участие в концерте, а остальные выступили по одному разу. сколько посещают кружок, если известно , что всего было 45 номеров?