log₇ (x² - 9) - log₇ (9 - 2x) = 1
одз :
1) x² - 9 > 0; (x + 3) (x - 3) > 0
метод интервалов
+++++++ (-3) (3) ++++++++++> х
x ∈ (-∞; -3) ∪ (3; +∞)
2) 9 - 2x > 0; 2x < 9; x < 4,5
одз : x ∈ (-∞; -3) ∪ (3; 4,5)
=====================
log₇ (x² - 9) = log₇ (9 - 2x) + 1
log₇ (x² - 9) = log₇ (9 - 2x) + log₇7
log₇ (x² - 9) = log₇ (7 · (9 - 2x))
x² - 9 = 7 · (9 - 2x)
x² + 14x - 72 = 0 квадратное уравнение, корни по т. виета
(x + 18)(x - 4) = 0
1) x + 18 = 0; x₁ = -18; x₁ ∈ (-∞; -3) ∪ (3; 4,5)
2) x - 4 = 0; x₂ = 4; x₂ ∈ (-∞; -3) ∪ (3; 4,5)
ответ: x₁ = -18; x₂ = 4
===============================
использованы формулы
logₐ a = 1
logₐ b + logₐ d = logₐ (b · d)
Поделитесь своими знаниями, ответьте на вопрос:
Відповідь:
1. 25 - 10x + x²
2. -9a² -16
3. (12 - a) (12 + a)
4. (z +3)(z +3)
5. (b - 2)(b - 2)
6. -26
Пояснення:
1. (5 - x)² = 25 - 10x + x²
2. (3a - 4)(4 + 3a) = 12a - 9a² - 16 - 12a = -9a² -16
3. 144 - a² = (12 - a) (12 + a)
4. 18 + 12z + 2z² = (z +3)(z +3)
5. 16 - 8b + b² = (b - 2)(b - 2)
6. 44 - 0,7 • (-10)² = 44 - 70 = -26
18 + 12z + 2z² = (z +3) (z +3)
2z² + 12z + 18 = 0
D = 144 - 4 * 18 * 2 = 144 - 144 = 0
z₁,₂ = (-12±0)/2*2 = -12/4 = -3
16 - 8b + b²
b² - 8b + 16 = 0
D = 64 - 4 * 1 * 16 = 64 - 64 =0
b₁,₂ = (8±0)/2*2 = 8/4 = 2