а) x² + 4x + 10 ≥ 0
D = 4² - 4· 10 = - 24
График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
Объяснение:
ответ:Привет!
Первоначально надо найти корни квадратного уравнения в числителе дроби
Корни квадратного уравнения можно решить последовательно рассчитывая дискриминант, значение которого должно быть больше или равно нулю (при нуле x1=x2), после - значения корней.
а*X^2+b*X+c=0
D=b*b-4*a*c ; x1=[-b-(D^(1/2))]/(2*a) и x2=[-b+(D^(1/2))]/(2*a)
Если D=0, то x1,2=-b/(2*a)
Теперь конкретно:
1) Числитель дроби
3x2 -7x +2=0
D=(-7)*(-7)-4*2*3=49-24=25
x1=[7-5]/(2*3)=2/6=1/3 и x2=[7+5]/(2*3)=12/6=2
3x2 -7x +2=(3x-1)*(x-2)
2) Знаменатель дроби
2-6х=2*(1-3х) Вынесем -1 за скобку, получим -2*(3x-1)
Имеем дробь [(3x-1)*(x-2)]/[-2*(3x-1)]
Здесь можно сократить на (3x-1)
После сокращения получаем [(x-2)]/[-2] или -0,5*(x-2)
ОТВЕТ: -0,5*(x-2)
Успехов!
Объяснение:Привет!
Первоначально надо найти корни квадратного уравнения в числителе дроби
Корни квадратного уравнения можно решить последовательно рассчитывая дискриминант, значение которого должно быть больше или равно нулю (при нуле x1=x2), после - значения корней.
а*X^2+b*X+c=0
D=b*b-4*a*c ; x1=[-b-(D^(1/2))]/(2*a) и x2=[-b+(D^(1/2))]/(2*a)
Если D=0, то x1,2=-b/(2*a)
Теперь конкретно:
1) Числитель дроби
3x2 -7x +2=0
D=(-7)*(-7)-4*2*3=49-24=25
x1=[7-5]/(2*3)=2/6=1/3 и x2=[7+5]/(2*3)=12/6=2
3x2 -7x +2=(3x-1)*(x-2)
2) Знаменатель дроби
2-6х=2*(1-3х) Вынесем -1 за скобку, получим -2*(3x-1)
Имеем дробь [(3x-1)*(x-2)]/[-2*(3x-1)]
Здесь можно сократить на (3x-1)
После сокращения получаем [(x-2)]/[-2] или -0,5*(x-2)
ОТВЕТ: -0,5*(x-2)
Успехов!
Поделитесь своими знаниями, ответьте на вопрос:
Решить. выражение: (2+c) (2-c)+(c-3) /во второй степени/ -3(4-2c)