это на принцип дирихле (про кролики и клетки - кроликов больше, чем клеток)
возьмем 2019 чисел-кроликов вида 1, 11, 111, 1111, единиц) и распределим их по 2018 клеткам с номерами 0, 1, 2, , 2017 (номер клетки совпадает с остатком от деления этого числа на 2018.
по принципу дирихле найдутся два числа, имеющие одинаковые остатки от деления на 2018 (найдется клетка, в которой два кролика, т.к. кроликов больше, чем клеток).
разность этих чисел не имеет остатка от деления на 2018 (делится без остатка) и содержит только 1 и 0 (нули получаются при вычитании единиц в одинаковых разрядах этих чисел).
например единиц) и 111(k единиц) и n> k
разность этих чисел -k единиц) нулей)
Поделитесь своими знаниями, ответьте на вопрос:
Прошу вас с по . нужно сделать.хотя бы что нибудь из этого. пусть y = 3x - x^3 - 5. (если что, x^3 это "x в кубе") исследуйте функцию и постройте её график. для этого найдите: а)область определения d(y) б)производную и критические точки в)промежутки монотонности г)точки экстремума и экстремумы д)точку пересечения графика с осью oy и ещё несколько точек графика е)множество значений e(y) функции ж) нули функции (можно приближенно) найдите наибольшее и наименьшее значения этой функции на отрезке {-3; 0}