Объяснение:
2) sinx, cosx=-4\5
По основному тригонометрическому тождеству:
sin^2x+cos^2x=1
sin^2x=1-cos^2x
sin^2x=25\25-16\25
sin^2x=9\25
sinx=3\5 (знак "+" потому, что синус в 1 и 2 четверти принимает положительные значения)
3) log2(16)*log6(36)=4*2=8
5) (1\6)^6-2x=36
(1\6)^6-2x=(1\6)^-2
Поскольку основания одинаковые, приравняем степени:
6-2x=-2
-2x=-8 | :(-2)
x=4
6) sinx=√2\2
x=(-1)^n*π\4+πn, n - целое
8) log√3(x)+log9(x)=10
2log3(x)+1\2log3(x)=10
2.5log3(x)=10 | :2.5
log3(x)=4
x=3^4
x=81
4) Вынесем 81 из-под корня:
(9√7√b)/14√b
Вынесем корень 7 степени из-под квадратного корня:
9*(14√b)\14√b
Сократим корень 14 степени из b, поскольку по условию b>0, значит знаменатель не может быть 0
9
1) y=f(x)
Наибольшее значение функции - наивысшая точка по оси Y, значит 7
3,84
Объяснение:
Проводя различные измерения, решая уравнения графическим выполняя арифметические вычисления, часто получают приближенные значения, а не точные. Например, при вычислении корня числа может получиться бесконечная непериодическая дробь (т. е. иррациональное число). Кроме того, существуют бесконечные периодические дроби, использовать которые в вычислениях также неудобно.
Поэтому числа, являющиеся бесконечными десятичными дробями или конечными, но имеющими множество знаков после запятой, принято округлять.
Когда округление выполняется в большую сторону, то говорят о приближении по избытку. Когда округление выполняется в меньшую сторону, то говорят о приближении по недостатку.
Полученное при округлении число называют приближенным по недостатку или избытку с определенной точностью. Рассмотрим несколько примеров приближения.
Число π является бесконечной дробью 3,1415926535... Обычно его округляют с точностью до 0,01. Это значит, что после запятой оставляют только два знака. При приближении по избытку получится 3,15. При приближении по недостатку получится 3,14.
Для числа π обычно используют приближение по недостатку, так как согласно правилу округления положительные числа округляются в большую сторону, если первая отбрасываемая цифра 5 или больше пяти. Так как у числа π третья цифра после запятой — это 1, то округление выполняется в меньшую сторону, то есть для расчетов выполняется приближение по недостатку.
Однако, несмотря на правила округления, имеют право быть приближения как по недостатку, так и по избытку.
Если выполнять приближение числа π с точностью до 0,0001, то по избытку получим π ≈ 3,1416, а по недостатку π ≈ 3,1415.
Рассмотрим иррациональное число √2, которое равно 1,414213... . Вычислим его приближение по недостатку и по избытку с точностью до 0,001. Поскольку приближение выполняется до тысячных долей, то у числа надо оставить три знака после запятой. При приближении по недостатку отбрасываются все цифры после третьей после запятой. При приближении по избытку цифры после третьей после запятой отбрасываются, а третья цифра увеличивается на 1. Таким образом, приближение по недостатку будет √2 ≈ 1,414, а по избытку √2 ≈ 1,415.
Но примеры, рассмотренные выше, это положительные числа. А так ли обстоит дело при приближении отрицательных чисел. Если взять число –√2 = –1,414213..., то его приближением по избытку до тысячных долей будет –1,414, так как это число больше, чем –√2. А вот приближением по недостатку будет –1,415, так как это число меньше, чем –√2.
Поделитесь своими знаниями, ответьте на вопрос:
Разложите на ! (x-y)2+3(x-y) два рядом со скобками это всё выражение в квадрате а именно: (х-у) и всё это в квадрате